Skip to main content

Advertisement

Log in

Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infectious bursal disease virus (IBDV) infection destroys the bursa of Fabricius, causing immunosuppression and rendering chickens susceptible to secondary bacterial or viral infections. IBDV large-segment-protein-expressing DNA has been shown to confer complete protection of chickens from infectious bursal disease (IBD). The purpose of the present study was to compare DNA-vaccinated chickens and unvaccinated chickens upon IBDV challenge by transcriptomic analysis of bursa regarding innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. One-day-old specific-pathogen-free chickens were vaccinated intramuscularly three times at weekly intervals with IBDV large-segment-protein-expressing DNA. Chickens were challenged orally with 8.2 × 102 times the egg infective dose (EID)50 of IBDV strain variant E (VE) one week after the last vaccination. Bursae collected at 0.5, 1, 3, 5, 7, and 10 days post-challenge (dpc) were subjected to real-time RT-PCR quantification of bursal transcripts related to innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. The expression levels of granzyme K and CD8 in DNA-vaccinated chickens were significantly (p < 0.05) higher than those in unvaccinated chickens upon IBDV challenge at 0.5 or 1 dpc. The expression levels of other genes involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport were not upregulated or downregulated in DNA-vaccinated chickens during IBDV challenge. Bursal transcripts related to innate immunity and inflammation, including TLR3, MDA5, IFN-α, IFN-β, IRF-1, IRF-10, IL-1β, IL-6, IL-8, iNOS, granzyme A, granzyme K and IL-10, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. The expression levels of genes related to immune cell regulation, apoptosis and glucose transport, including CD4, CD8, IL-2, IFN-γ, IL-12(p40), IL-18, GM-CSF, GATA-3, p53, glucose transporter-2 and glucose transporter-3, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. Taken together, the results indicate that the bursal transcriptome involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport, except for granzyme K and CD8, was not differentially expressed in DNA-vaccinated chickens protected from IBDV challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akaike T, Maeda H (2000) Nitric oxide and virus infection. Immunology 101:300–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Arrode G, Hegde R, Mani A, Jin Y, Chebloune Y, Narayan O (2007) Phenotypic and functional analysis of immune CD8+ T cell responses induced by a single injection of a HIV DNA vaccine in mice. J Immunol 178:2318–2327

    Article  CAS  PubMed  Google Scholar 

  3. Avery S, Rothwell L, Degen WD, Schijns VE, Young J, Kaufman J, Kaiser P (2004) Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J Interferon Cytokine Res 24:600–610

    Article  CAS  PubMed  Google Scholar 

  4. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  5. Belardelli F (1995) Role of interferons and other cytokines in the regulation of the immune response. APMIS 103:161–179

    Article  CAS  PubMed  Google Scholar 

  6. Bovenschen N, Quadir R, van den Berg AL, Brenkman AB, Vandenberghe I, Devreese B, Joore J, Kummer JA (2009) Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A. J Biol Chem 284:3504–3512

    Article  CAS  PubMed  Google Scholar 

  7. Carballeda JM, Zoth SC, Gomez E, Gravisaco MJ, Berinstein A (2011) Activation of the immune response against infectious bursal disease virus after intramuscular inoculation of an intermediate strain. Immunobiology 216:1028–1033

    Article  CAS  PubMed  Google Scholar 

  8. Chang HC, Lin TL, Wu CC (2001) DNA-mediated vaccination against infectious bursal disease in chickens. Vaccine 20:328–335

    Article  CAS  PubMed  Google Scholar 

  9. Chang HC, Lin TL, Wu CC (2003) DNA vaccination with plasmids containing various fragments of large segment genome of infectious bursal disease virus. Vaccine 21:507–513

    Article  CAS  PubMed  Google Scholar 

  10. Chen YY, Hsieh MK, Tung CY, Wu CC, Lin TL (2011) Infectious bursal disease DNA vaccination conferring protection by delayed appearance and rapid clearance of invading viruses. Arch Virol 156:2241–2250

    Article  CAS  PubMed  Google Scholar 

  11. Eldaghayes I, Rothwell L, Williams A, Withers D, Balu S, Davison F, Kaiser P (2006) Infectious bursal disease virus: strains that differ in virulence differentially modulate the innate immune response to infection in the chicken bursa. Viral Immunol 19:83–91

    Article  CAS  PubMed  Google Scholar 

  12. Gracie JA, Robertson SE, McInnes IB (2003) Interleukin-18. J Leukoc Biol 73:213–224

    Article  CAS  PubMed  Google Scholar 

  13. He H, Genovese KJ, Nisbet DJ, Kogut MH (2007) Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Mol Immunol 44:3234–3242

    Article  CAS  PubMed  Google Scholar 

  14. He H, Genovese KJ, Swaggerty CL, MacKinnon KM, Kogut MH (2012) Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-gamma and regulatory cytokine IL-10 expression in chicken monocytes. Dev Comp Immunol 36:756–760

    Article  CAS  PubMed  Google Scholar 

  15. Hong YH, Lillehoj HS, Lee SH, Dalloul RA, Lillehoj EP (2006) Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol 114:209–223

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh MK, Wu CC, Lin TL (2006) The effect of co-administration of DNA carrying chicken interferon-gamma gene on protection of chickens against infectious bursal disease by DNA-mediated vaccination. Vaccine 24:6955–6965

    Article  CAS  PubMed  Google Scholar 

  17. Ismail NM, Saif YM (1991) Immunogenicity of infectious bursal disease viruses in chickens. Avian diseases 35:460–469

    Article  CAS  PubMed  Google Scholar 

  18. Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, von Gegerfelt A, Huang W, Guan Y, Broderick KE, Sardesai NY, Labranche C, Montefiori DC, Pavlakis GN, Felber BK (2012) IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother 8:1620–1629

  19. Jenkins MR, Trapani JA, Doherty PC, Turner SJ (2008) Granzyme K expressing cytotoxic T lymphocytes protects against influenza virus in granzyme AB−/− mice. Viral Immunol 21:341–346

    Article  CAS  PubMed  Google Scholar 

  20. Khatri M, Palmquist J, Cha R, Sharma J (2005) Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Res 113:44–50

    Article  CAS  PubMed  Google Scholar 

  21. Kim IJ, Karaca K, Pertile TL, Erickson SA, Sharma JM (1998) Enhanced expression of cytokine genes in spleen macrophages during acute infection with infectious bursal disease virus in chickens. Vet Immunol Immunopathol 61:331–341

    Article  CAS  PubMed  Google Scholar 

  22. Kim IJ, You SK, Kim H, Yeh HY, Sharma JM (2000) Characteristics of bursal T lymphocytes induced by infectious bursal disease virus. J Virol 74:8884–8892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lewis PJ, Babiuk LA (1999) DNA vaccines: a review. Advances in virus research 54:129–188

    Article  CAS  PubMed  Google Scholar 

  24. Li YP, Handberg KJ, Juul-Madsen HR, Zhang MF, Jorgensen PH (2007) Transcriptional profiles of chicken embryo cell cultures following infection with infectious bursal disease virus. Arch Virol 152:463–478

    Article  CAS  PubMed  Google Scholar 

  25. Liu M, Vakharia V (2006) Nonstructural protein of infectious bursal disease virus inhibits apoptosis at the early stage of virus infection. J Virol 80:3369–3377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mardassi H, Khabouchi N, Ghram A, Namouchi A, Karboul A (2004) A very virulent genotype of infectious bursal disease virus predominantly associated with recurrent infectious bursal disease outbreaks in Tunisian vaccinated flocks. Avian diseases 48:829–840

    Article  PubMed  Google Scholar 

  27. Metkar SS, Menaa C, Pardo J, Wang B, Wallich R, Freudenberg M, Kim S, Raja SM, Shi L, Simon MM, Froelich CJ (2008) Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29:720–733

    Article  CAS  PubMed  Google Scholar 

  28. Moffat JM, Gebhardt T, Doherty PC, Turner SJ, Mintern JD (2009) Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. Eur J Immunol 39:1203–1210

    Article  CAS  PubMed  Google Scholar 

  29. Mundt E, Beyer J, Müller H (1995) Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol 76(Pt 2):437–443

    Article  CAS  PubMed  Google Scholar 

  30. Mundt E, Köllner B, Kretzschmar D (1997) VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol 71:5647–5651

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Nagarajan MM, Kibenge FS (1997) Infectious bursal disease virus: a review of molecular basis for variations in antigenicity and virulence. Can J Vet Res 61:81–88

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Nehyba J, Hrdlickova R, Burnside J, Bose HR Jr (2002) A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 22:3942–3957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rauf A, Khatri M, Murgia MV, Saif YM (2011) Expression of perforin-granzyme pathway genes in the bursa of infectious bursal disease virus-infected chickens. Dev Comp Immunol 35:620–627

    Article  CAS  PubMed  Google Scholar 

  34. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  PubMed  Google Scholar 

  35. Ruby T, Whittaker C, Withers DR, Chelbi-Alix MK, Morin V, Oudin A, Young JR, Zoorob R (2006) Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. J Virol 80:9207–9216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sharma J, Kim I, Rautenschlein S, Yeh H (2000) Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Dev Comp Immunol 24:223–235

    Article  CAS  PubMed  Google Scholar 

  37. Sharma JM, Dohms JE, Metz AL (1989) Comparative pathogenesis of serotype 1 and variant serotype 1 isolates of infectious bursal disease virus and their effect on humoral and cellular immune competence of specific-pathogen-free chickens. Avian diseases 33:112–124

    Article  CAS  PubMed  Google Scholar 

  38. Sorbara LR, Maldarelli F, Chamoun G, Schilling B, Chokekijcahi S, Staudt L, Mitsuya H, Simpson IA, Zeichner SL (1996) Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression. J Virol 70:7275–7279

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Swaggerty CL, Kogut MH, Ferro PJ, Rothwell L, Pevzner IY, Kaiser P (2004) Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and -susceptible chickens. Immunology 113:139–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tan B, Wang H, Shang L, Yang T (2009) Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. Arch Virol 154:1117–1124

    Article  CAS  PubMed  Google Scholar 

  41. Wei L, Zhu S, Ruan G, Hou L, Wang J, Wang B, Liu J (2011) Infectious bursal disease virus-induced activation of JNK signaling pathway is required for virus replication and correlates with virus-induced apoptosis. Virology 420:156–163

    Article  CAS  PubMed  Google Scholar 

  42. Whitmire JK, Tan JT, Whitton JL (2005) Interferon-gamma acts directly on CD8+ T cells to increase their abundance during virus infection. J Exp Med 201:1053–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Williams AE, Davison TF (2005) Enhanced immunopathology induced by very virulent infectious bursal disease virus. Avian Pathol 34:4–14

    Article  CAS  PubMed  Google Scholar 

  44. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  45. Wong R, Hon C, Zeng F, Leung F (2007) Screening of differentially expressed transcripts in infectious bursal disease virus-induced apoptotic chicken embryonic fibroblasts by using cDNA microarrays. J Gen Virol 88:1785–1796

    Article  CAS  PubMed  Google Scholar 

  46. Wu YF, Shien JH, Yin HH, Chiow SH, Lee LH (2008) Structural and functional homology among chicken, duck, goose, turkey and pigeon interleukin-8 proteins. Vet Immunol Immunopathol 125:205–215

    Article  CAS  PubMed  Google Scholar 

  47. Yao K, Vakharia V (2001) Induction of apoptosis in vitro by the 17-kDa nonstructural protein of infectious bursal disease virus: possible role in viral pathogenesis. Virology 285:50–58

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Liu R, Song M, Hu Y, Pan B, Cai J, Wang M (2012) Eimeria tenella: interleukin 17 contributes to host immunopathology in the gut during experimental infection. Exp Parasitol 133:121–130

    Article  PubMed  Google Scholar 

  49. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE (2006) GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res 16:3–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsang Long Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CC., Kim, BS., Wu, C.C. et al. Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus. Arch Virol 160, 69–80 (2015). https://doi.org/10.1007/s00705-014-2232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2232-y

Keywords

Navigation