Skip to main content

Advertisement

Log in

Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Various approaches have been developed to improve the efficacy of DNA vaccination, such as the use of plasmids expressing cytokines as molecular adjuvants. The purpose of the present study was to determine whether co-administration of a plasmid containing a chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) gene and a plasmid containing the S1 gene of infectious bronchitis virus (IBV) could enhance the immune response and protection efficacy in chickens against challenge by virulent IBV. Plasmids carrying the S1 gene of IBV (pVAX-S1) and the chicken GM-CSF gene (pVAX-chGM-CSF) were constructed. Seven-day-old chickens were injected intramuscularly with pVAX-S1, pVAX-chGM-CSF, or both and boosted 2 weeks later. Chickens were challenged with virulent IBV at 3 weeks after the booster immunization and observed for 2 weeks. The results showed that co-administration of pVAX-chGM-CSF led to a significant enhancement of humoral and cellular responses over that of vaccination with pVAX-S1 alone. In addition, vaccination with pVAX-chGM-CSF and pVAX-S1 provided 86.7% protection (13/15) against IBV challenge. In contrast, only 73.3% of the chickens were protected against IBV challenge by pVAX-S1 vaccination alone. These results strongly indicate that chGM-CSF can be used as a molecular adjuvant to enhance the protective immunity induced by an IBV-specific DNA vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cavanagh D, Naqi SA (1997) Infectious bronchitis. In: Calnek BW, Barnes HJ, Beard CW, Mc-Dougald LR, Saif YM (eds) Diseases of poultry, 10th edn. Iowa State University Press, Ames, pp 511–526

    Google Scholar 

  2. Naqi SA, Karaca K, Jia W (1993) Significance of genetic recombination in the emergence of IBV variants. In: Proceedings of 130th annual meeting of the American Veterinary Medical Association, Minneapolis, MN, p 152

  3. Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 356:1745–1749

    Article  Google Scholar 

  4. Li JR, Huang YW, Liang XY, Lu MJ, Li L, Yu L, Deng RT (2003) Plasmid DNA encodingantigens of infectious bursal disease viruses induce protective immune responses in chickens: factors influencing efficacy. Virus Res 98:63–74

    Article  PubMed  CAS  Google Scholar 

  5. Kalinna BH (1997) DNA vaccines for parasitic infections. Immunol Cell Biol 75:370–375

    Article  PubMed  CAS  Google Scholar 

  6. Geissler M, Gesien A, Tokushige K, Wands JR (1997) Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 158:1231–1237

    PubMed  CAS  Google Scholar 

  7. Fodor I, Horvath E, Fodor N, Nagy E, Rencendorsh A, Vakharia VN, Dube SK (1999) Induction of protective immunity in chickens immunized with plasmid DNA encoding infectious bursal disease virus antigens. Acta Vet Hung 47:481–492

    Article  PubMed  CAS  Google Scholar 

  8. Hsieh MK, Wu CC, Lin TL (2006) The effect of co-administration of DNA carrying chicken interferon-γgene on protection of chickens against infectious bursal disease by DNA-mediated vaccination. Vaccine 24:6955–6965

    Article  PubMed  CAS  Google Scholar 

  9. Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT, Tao MH (1998) Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol 160:1320–1329

    PubMed  CAS  Google Scholar 

  10. Du YJ, Jiang P, Li YF, He HR, Jiang WM, Wang XL, Hong WB (2007) Immune responses of two recombinant adenoviruses expressing VP1 antigens of FMDV fused with porcine granulocyte macrophage colony-stimulating factor. Vaccine 25:8209–8219

    Article  PubMed  CAS  Google Scholar 

  11. Tazi A, Bouchonnet F, Grandsaigne M, Boumsell L, Hance IAJ, Soler P (1993) Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J Clin Invest 91:566–576

    Article  PubMed  CAS  Google Scholar 

  12. Shi YF, Liu CH, Roberts AI, Das J, Xu GW, Ren GW, Zhang YY, Zhang LY, Yuan ZR, Tan HSW, Das G, Devadas S (2006) Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res 16:126–133

    Article  PubMed  CAS  Google Scholar 

  13. Foss DL, Bennaars AM, Pennell CA, Moody MD, Murtaugh MP (2003) Differentiation of pocine dendritic cells by granulocyte-macrophage colony-stimulating factor expressed in pichia pastoris. Vet Immunol Immunopathol 91:205–215

    Article  PubMed  CAS  Google Scholar 

  14. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RT (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony- stimulating factor. J Exp Med 176:1693–1702

    Article  PubMed  CAS  Google Scholar 

  15. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  16. Parker JN, Pfister LA, Quenelle D, Gillespie GY, Markert JM, Kern ER, Whitley RJ (2006) Genetically engineered herpes simplex viruses that express IL-12 or GM-CSF as vaccine candidates. Vaccine 24:1644–1652

    Article  PubMed  CAS  Google Scholar 

  17. Andrew M, Morris K, Coupar B, Sproat K, Oke P, Bruce M, Broadway M, Morrissy C, Strom D (2006) Porcine interleukin-3 enhances DNA vaccination against classical swine fever. Vaccine 24:3241–3247

    Article  PubMed  CAS  Google Scholar 

  18. Qiu JT, Changa HC, Lin CT, Chen YM, Li FQ, Soong YK, Lai CH (2007) Novel codon-optimized GM-CSF gene as an adjuvant to enhance the immunity of a DNA vaccine against HIV-1 Gag. Vaccine 25:253–263

    Article  PubMed  CAS  Google Scholar 

  19. Cavanagh D, Davis PJ, Darbyshire JH, Peters RW (1986) Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagg lutination-Inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 67:1435–1442

    Article  PubMed  CAS  Google Scholar 

  20. Ignjatovic J, Galli L (1994) The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol 138:117–134

    Article  PubMed  CAS  Google Scholar 

  21. Song CS, Lee YJ, Lee CW, Sung HW, Kim JH, Mo IP, Izumiya Y, Jang HK, Mikami T (1998) Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol 79:719–723

    PubMed  CAS  Google Scholar 

  22. Froebel KS, Pakker NG, Aiuti F, Bofill M, Choremi-Papadopoulou H, Economidou J, Rabian C (1999) Standardization and quality assurance of lymphocyte proliferation assays for use in the assessment of immune function. J Immunol Methods 227:85–89

    Article  PubMed  CAS  Google Scholar 

  23. Cohen AD, Boyer JD, Weiner DB (1998) Modulating the immune response to genetic immunization. FASEB J 12:1611–1626

    PubMed  CAS  Google Scholar 

  24. Nash AD, Lofthouse SA, Barcham GJ, Jacobs HJ, Ashman K, Meeusen EN, Brandon MR, Andrews AE (1993) Recombinant cytokines as immunological adjuvants. Immunol Cell Biol 71:367–379

    Article  PubMed  CAS  Google Scholar 

  25. Opal SM, Wherry JC, Grint P (1998) Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clin Infect Dis 27:1497–1507

    Article  PubMed  CAS  Google Scholar 

  26. Bukowski RM (2000) Cytokine combinations: therapeutic use in patients with advanced renal cell carcinoma. Semin Oncol 27:204–212

    PubMed  CAS  Google Scholar 

  27. Nobiron I, Thompson I, Brownlie J, Collins ME (2001) Cytokine adjuvancy of BVDV DNA vaccine enhances both humoral and cellular immune responses in mice. Vaccine 19:4226–4235

    Article  PubMed  CAS  Google Scholar 

  28. Song K, Chang Y, Prud’homme GJ (2000) Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and nonviral cytokine gene transfer. Gene Ther 7:481–492

    Article  PubMed  CAS  Google Scholar 

  29. Metcal D (1985) The granulocyte-macrophage colony-stimulating factors. Science 229:16–22

    Article  Google Scholar 

  30. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cell. Natrue 360:258

    Article  CAS  Google Scholar 

  31. Haddad D, Ramprakash J, Sedegah M, Charoenvit Y, Baumgartner R, Kumar S, Hoffman SL, Weiss WR (2000) Plasmid vaccine expressing granulocyte-macrophage colony- stimulating factor attracts infiltrates including immature dendritic cells into injected muscles. J Immunol 165:3772–3781

    PubMed  CAS  Google Scholar 

  32. Kozak M (1987) An analysis of 5-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8140

    Article  PubMed  CAS  Google Scholar 

  33. Sin JI, Kim JJ, Ugen KE, Ciccarelli RB, Higgins TJ, David B (1998) Enhancement of protective humoral (Th2) and cellmediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocytemacrophage colony-stimulating factor expression cassette. Eur J Immunol 28:3530–3540

    Article  PubMed  CAS  Google Scholar 

  34. Gelb JJ, Nix WA, Gellman SD (1998) Infectious bronchitis virus antibodies in tears and their relationship to immunity. Avian Dis 42:364–374

    Article  PubMed  Google Scholar 

  35. Raggi LG, Lee GG (1965) Lack of correlation between infectivity, serologic response and challenge results in immunization with an avian infectious bronchitis vaccine. J Immunol 94:538–543

    PubMed  CAS  Google Scholar 

  36. Cook JK, Davison TF, Huggins MB, McLauthlan P (1991) Effect of in vivo bursectomy on the course of an infectious bronchitis virus infection in line C White Leghoen chickens. Arch Virol 118:225–234

    Article  PubMed  CAS  Google Scholar 

  37. Toro H, Fernandez I (1994) Avian infectious bronchitis: specific lachrymal IgA level and resistance against challenge. Zentralbl Veterinarmed 41:467–472

    CAS  Google Scholar 

  38. Collisson EW, Pei J, Dzielawa J, Seo SH (2000) Cytotoxic T lymphocytes are critical in the control of infectious bronchitis in poultry. Dev Comp Immunol 24:187–200

    Article  PubMed  CAS  Google Scholar 

  39. Seo SH, Collisson EW (1997) Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J Virol 71:5173–5177

    PubMed  CAS  Google Scholar 

  40. Blanchard D, Gaillard C, Hermann P, Banchereau J (1994) Role of CD40 antigen and interleukin-2 in T cell-dependent human B lymphocyte growth. Eur J Immunol 24:330–335

    Article  PubMed  CAS  Google Scholar 

  41. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C (1994) The CD40 antigen and its ligand. Annu Rev Immunol 12:881–922

    Article  PubMed  CAS  Google Scholar 

  42. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the foundation of Chinese National Programs for High Technology Research and Development (project number 2006AA10A205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongning Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Wang, H., Shang, L. et al. Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. Arch Virol 154, 1117–1124 (2009). https://doi.org/10.1007/s00705-009-0424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0424-7

Keywords

Navigation