Skip to main content
Log in

White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high (>40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities (>28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiravanichpaisal P, Miyazaki T, Limsuawan C (1994) Histopathology, biochemistry and pathogenicity of Vibrio harveyi infecting black tiger Penaeus monodon. J Aquat Anim Health 61(1994):27–35

    Article  Google Scholar 

  2. Lightner DV, Redman RM, Poulos BT, Nunan LM, Mari JL, Hasson KW (1997) Risk of spread of penaeid shrimp viruses in the Americas by international movement of live shrimp for aquaculture and frozen shrimp for commodity markets. Rev Sci Tech Off Int Epizoot 16:146–160

    CAS  Google Scholar 

  3. Durand SV, Tang KFJ, Lightner DV (2003) Frozen commodity shrimp: potential avenue for introduction of white spot syndrome virus and yellow head virus. J Aquat Org 27:59–66

    Article  Google Scholar 

  4. Lightner DV (1996) A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp. World Aquaculture Society, Baton Rouge

    Google Scholar 

  5. Flegel TW (1997) Special topic review, major viral diseases of the black tiger prawn Penaeus monodon in Thailand. World J Microbiol Biotechnol 13:433–442

    Article  Google Scholar 

  6. Chou HY, Huang CY, Wang CH, Chiang HC, Lo CF (1995) Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Org 23:165–173

    Article  Google Scholar 

  7. Zhan WB, Wang YH, Fryer JL, Yu KK, Fukuda H, Meng QX (1998) White spot syndrome virus infection of cultured shrimp in China. J Aquat Anim Health 10:405–410

    Article  Google Scholar 

  8. Corbel V, Zuprizal R, Shi Z, Huang C, Sumartono L, Arcier JM et al (2001) Experimental infection of European crustaceans with white spot syndrome virus (WSSV). J Fish Dis 24:377–382

    Article  Google Scholar 

  9. Lightner DV (2011) Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. J Invertebr Pathol 106:110–130

    Article  CAS  PubMed  Google Scholar 

  10. Liu B, Yu Z, Song X, Guan Y, Jian X, He J (2006) The effect of acute salinity change on white spot syndrome (WSS) outbreaks in Fenneropenaeus chinensis. Aquaculture 253:163–170

    Article  CAS  Google Scholar 

  11. Joseph A, Philip R (2007) Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture 272:87–97

    Article  CAS  Google Scholar 

  12. Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Bliss DE, Mantel LH (eds) The biology of crustacea, vol 5., Internal anatomy and physiological regulationsAcademic Press, New York, pp 53–161

    Google Scholar 

  13. Péqueux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60

    Article  Google Scholar 

  14. Lignot JH, Cochrad JC, Soyez C, Lemaire P, Charmantier G (1999) Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris. Aquaculture 170:79–92

    Article  CAS  Google Scholar 

  15. Lignot JH, Spanings-Pierrot C, Charmantier G (2000) Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture 191:209–245

    Article  CAS  Google Scholar 

  16. Brito R, Chimal ME, Rosas C (2000) Effect of salinity in survival, growth and osmotic capacity in early juveniles of Farfantepenaeus brasiliensis (Decapoda: Penaeidae). J Exp Mar Biol Ecol 244:252–263

    Article  Google Scholar 

  17. Tan LT, Soon S, Lee KL, Shariff M, Hassan MD, Omar AR (2001) Quantitative analysis of an experimental white spot syndrome virus (WSSV) infection in Penaeus monodon (Fabricius) using competitive polymerase chain reaction. J Fish Dis 24:315–323

    Article  CAS  Google Scholar 

  18. Dhar AK, Roux MM, Klimpel KR (2001) Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR green chemistry. J Clin Microbiol 39:2835–2845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Durand SV, Lightner DV (2002) Quantitative real time PCR for the measurement of white spot syndrome virus in shrimp. J Fish Dis 25:381–389

    Article  CAS  Google Scholar 

  20. de Wit C, Fautz C, Xu Y (2000) Real-time quantification PCR for retrovirus-like particle quantification in CHO cell culture. Biologicals 28:137–148

    Article  PubMed  Google Scholar 

  21. Roberts CA, Dietzgen RG, Heelan LA, Maclean DJ (2000) Real-time RT-PCR fluorescent detection of tomato spottedwilt virus. J Virol Methods 88:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Tang KF, Lightner DV (2001) Detection and quantification of infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp by real-time PCR. Dis Aquat Org 44:79–85

    Article  CAS  PubMed  Google Scholar 

  23. FAO (2010) El estado mundial de la pesca y la aquacultura 2010. Departamento de Pesca y Acuicultura de la Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma, 219 pp

  24. Perez-Farfante I, Kensley B (1997) Penaeoid and Sergestoid shrimps and prawns of the World, Keys and Diagnoses for the Families and Genera, Memoires du Museum National d`Histoire Naturelle, Paris, France

  25. Wang GJ (2000) Biology and rearing technology of Litopenaeus vannamei. Chin J Fish Sci Technol 85:17–20

    Google Scholar 

  26. Comité Estatal de Sanidad Acuícola e Inocuidad de Baja California A. C., Informe Técnico de Campaña Sanitaria, julio 2010. http://www.cesaibc.org/, June 2011

  27. Prior S, Browdy CL, Shepard EF, Laramore R, Parnell PG (2003) Controlled bioassay systems for determination of lethal infective doses of tissue homogenates containing taura syndrome or white spot syndrome virus. Dis Aquat Org 54:89–96

    Article  PubMed  Google Scholar 

  28. Masek T, Vopalensky V, Suchomelova P, Pospisek M (2005) Denaturing RNA electrophoresis in TAE agarose gels. Anal Biochem 336:46–50

    Article  CAS  PubMed  Google Scholar 

  29. Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang HA, Kou GH et al (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78:11360–11370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Leu JH, Tsai JM, Wang HC, Wang AH, Wang CH, Kou GH, Lo CF (2005) The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein vp664, the largest viral structural protein ever found. J Virol 79:140–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sambrook J, Russell WD (2006) The Condensed Protocols from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  32. De la Vega E, Degnan BM, Hall MR, Cowley JA, Wilson KJ (2004) Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon. Dis Aquat Org 59:195–203

    Article  PubMed  Google Scholar 

  33. Burge EJ, Burnett LE, Burnett KG (2009) Time-course analysis of peroxinectin mRNA in the shrimp Litopenaeus vannamei after challenge with Vibrio campbellii. Fish Shellfish Immunol 27:603–609

    Article  CAS  PubMed  Google Scholar 

  34. Zar JH (1999) Biostatistical analysis, 4th edn. Department of Biological Science. Prentice Hall, New Jersey, pp 220–225

  35. R Development Core Team (2011) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/

  36. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes, R package version 0.999375-39. http://CRAN.R-project.org/package=lme4

  37. Therneau T, Lumley T (2011) Original Splus->R port, Survival: Survival analysis, including penalised likelihood. R package version 2.36-9. http://CRAN.R-project.org/package=survival

  38. Péqueux A, Dandrifosse G, Loret S, Charmantier G, Charmantier-Daures M, Spanings-Pierrot C, Schoffeniels E (2006) Osmoregulation: morphological, physiological, biochemical, hormonal, and developmental aspects. In: Forest J, von Vaupel-Klein JC (eds) The Crustacea, vol 2., 11Brill, Leiden, pp 205–308

    Google Scholar 

  39. Bray WA, Lawrence AL, Leung-Trujillo JR (1994) The effect of salinity on growth and survival of Penaeus vannamei, with observations on the interaction of IHHN virus and salinity. Aquaculture 122:133–146

    Article  Google Scholar 

  40. Pérez-Velázquez M, González-Félix ML, Jaimes-Bustamante F (2007) Growth of Litopenaeus vannamei raised at extreme salinities. Panorama Acuicola 13(1):46–53

    Google Scholar 

  41. Rosas C, López N, Mercado P, Martínez E (2001) Effect of salinity acclimation on oxygen consumption of juvenile of the white shrimp Litopenaeus vannamei. J Crustac Biol 21:912–922

    Article  Google Scholar 

  42. Pérez-Velazquez M, González-Félix ML, Jaimes-Bustamante F, Martínez-Córdova LR, Trujillo-Villalba DA (2007) Investigation of the effects of salinity and dietary protein level on growth and survival of Pacific white shrimp, Litopenaeus vannamei. J World Aquac Soc 38:475–485

    Article  Google Scholar 

  43. Marshall WS, Grosell M (2005) Ion transport, osmoregulation, and acid–base balance. In: Evans DH, Claiborne J (eds) The physiology of fishes. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  44. Sowers AD, Gatlin DM III, Young SP, Isely JJ, Browdy CL, Tomasso JR (2005) Responses of Litopenaeus vannamei (Boone) in water containing low concentrations of total dissolved solids. Aquac Res 36:819–823

    Article  Google Scholar 

  45. Zhu CB, Dong SL, Wang F (2006) The interaction of salinity and Na/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. J Shellfish Res 25:107–112

    Article  Google Scholar 

  46. Boyd CE (1989) Water quality management and aeration in shrimp farming. In: Fisheries and allied aquacultures departmental series no 2. Alabama Agricultural Experimental Station, Auburn University, Alabama, USA

  47. Ogle JT, Beaugez K, Lotz JM (1992) Effects of salinity on survival and growth of postlarval Penaeus vannamei. Gulf Res Rep 8:415–421

    Google Scholar 

  48. Valdez G, Díaz F, Re AD, Sierra E (2008) Efecto de la salinidad sobre la fisiología energética del camarón blanco Litopenaeus vannamei (Boone). Hidrobiológica 18:105–115

    Google Scholar 

  49. Pham D, Charmantier G, Wabete N, Boulo V, Broutoi F, Mailliez JR et al (2012) Salinity tolerance, ontogeny of osmoregulation and zootechnical improvement in the larval rearing of the Caledonian Blue Shrimp, Litopenaeus stylirostris (Decapoda, Penaeidae). Aquaculture 362–363:10–17

    Article  Google Scholar 

  50. Laramore S, Laramore CR, Scarpa J (2001) Effect of low salinity on growth and survival of the Pacific white shrimp Penaeus vannamei. J World Aquac Soc 32:385–392

    Article  Google Scholar 

  51. Díaz F, Farfan C, Sierra E, Re AD (2001) Effects of temperature and salinity fluctuation on the ammonium excretion and osmoregulation of juveniles of Penaeus vannamei, Boone. Mar Freshw Behav Physiol 34:93–104

    Article  Google Scholar 

  52. Re AD, Díaz F, Ponce-Rivas E, Giffard I, Muñoz-Marquez ME, Sigala-Andrade HM (2012) Combined effect of temperature and salinity on the Thermo tolerance and osmotic pressure of juvenile white shrimp Litopenaeus vannamei (Boone). J Therm Biol 37:413–418

    Article  Google Scholar 

  53. Gao H, Kong J, Li Z, Xiao G, Meng X (2001) Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp Fenneropenaeus chinensis by real-time PCR. Aquaculture 312:26–31

    Article  Google Scholar 

  54. Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, Aoki T et al (2007) Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 8:120

    Article  PubMed Central  PubMed  Google Scholar 

  55. Motesdeoca M, Amano Y, Echeverria F, Betancourt I, Panchana F, Sotomayor M et al (2002) La respuesta inmunitaria celular del camarón Litopenaeus vannamei al WSSV y su utilidad en el control de la enfermedad en los estanques. El Mundo Acuícola 8:38–42

    Google Scholar 

  56. Durand S, Lightner DV, Redman RM, Bonami R (1997) Ultraestructure and morphogenesis of White Spot Syndrome Baculovirus (WSSV). Dis Aquat Org 29:205–211

    Article  Google Scholar 

  57. Wang CS, Tang KFJ, Kou GH, Chen SN (1997) Light and electron microscopic evidence of white spot disease in the giant tiger shrimp, Penaeus monodon (Fabricius), and the kuruma shrimp, Penaeus japonicas (Bate), cultured in Taiwan. J Fish Dis 20:323–331

    Article  Google Scholar 

  58. Noga EJ (2000) Hemolymph biomarkers of crustacean health. In: Fingerman M, Nagabhushanam R (eds) Recent advance in marine biotechnology, immunobiology and pathology, vol 5. Science Publishers Inc., Enfield, pp 125–163

    Google Scholar 

  59. Song YL, Yu CI, Lien TW, Huang CC, Lin MN (2003) Haemolymph parameters of pacific white shrimp (Penaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immunol 14:317–331

    Article  CAS  PubMed  Google Scholar 

  60. Pauley GB, Newman MW, Gould E (1975) Serum changes in the blue crab, Callinectes sapidus associated with Paramoeba perniciosa, the causative agent of gray crab disease. Mar Fish Rev 37:34–38

    Google Scholar 

  61. Rodríguez J, Bayot B, Amano Y, Panchana F, de Bla I, Alday V et al (2003) White spot syndrome virus infection in cultured Penaeus vannamei (Boone) in Ecuador with emphasis on histopathology and ultrastructure. J Fish Dis 26:439–450

    Article  PubMed  Google Scholar 

  62. Durand SV, Redman RM, Mohney LL, Tang-Nelson K, Bonami JR, Lightner DV (2003) Qualitative and quantitative studies on the relative virus load of tails and heads of shrimp acutely infected with WSSV. Aquaculture 216:9–18

    Article  Google Scholar 

  63. Navarro-Nava F, Castro-Longoria R, Grijalva-Chon JM, Ramos-Paredes J, de la Rosa-Vélez J (2011) Infection and mortality of Penaeus vannamei at extreme salinities when challenged with Mexican yellow head virus. J Fish Dis 34:327–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by PROMEP 130.5/08/3203, CONACyT-Ciencia básica I0110/194/09 and MSc grant 215469, which was allocated to SRC. We thank Oc Granados C., Yepiz R. and Gendrop V. for their technical assistance. We also thank Aquacultura Mahar and Vizomar for supplying the PLs and juveniles. Our gratitude is also due to an anonymous reviewer who greatly helped us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivone Giffard-Mena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Carreño, S., Valencia-Yáñez, R., Correa-Sandoval, F. et al. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity. Arch Virol 159, 2213–2222 (2014). https://doi.org/10.1007/s00705-014-2052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2052-0

Keywords

Navigation