Skip to main content

Advertisement

Log in

Comprehensive precipitation evaluation of TRMM 3B42 with dense rain gauge networks in a mid-latitude basin, northeast, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Knowledge on understanding quality of The Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 dataset over mid-high latitudes regions is limited, which restricts its potential application in climate and hydrology fields. This study focuses on giving a detailed evaluation of the accuracy of 3B42 with observation data obtained from a high density rain gauge network over the Hun-Tai Basin in Liaoning Province, northeast China during 1998–2006. Several accuracy statistics are used to evaluate it quantitatively in terms of error of precipitation amount and ability in detecting the occurrence of precipitation events. Comparative results for three timescales (daily, monthly, and annual scale) at the basin scale show that 3B42 is more suitable for analyzing precipitation at large timescale, especially monthly scale (strong correlation of 0.93) due to the use of monthly rain gauge observation for bias correction in producing 3B42. Yet, 3B42 generally overestimates precipitation at all three timescales, especially the most serious degree of overestimation at daily scale with the absolute bias of 123.94 % and light to moderate rain events (1–20 mm). Moreover, the performance is influenced by topography, and 3B42 has a larger error of precipitation amount but has a better detection of the occurrence of precipitation events over high-altitude region than those over low-altitude region. Also, accuracy of 3B42 decreases with precipitation intensity, it suggests that 3B42 is incapable of capturing heavy precipitation events with desirable accuracy for the study on extreme precipitation events. In following works, overestimation characteristic should be weaken by improving satellite-based precipitation estimations algorithms and developing more effective bias correction techniques, it is important for streamflow simulations using 3B42 as forcing data over ungauged regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad S, Kalra A, Stephen H (2010) Estimating soil moisture using remote sensing data: a machine learning approach. Adv Water Resour 33:69–80. doi:10.1016/j.advwatres.2009.10.008

    Google Scholar 

  • Almazroui M (2011) Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res 99:400–414. doi:10.1016/j.atmosres.2010.11.006

    Google Scholar 

  • Behrangi A, Khakbaz B, Jaw TC, AghaKouchak A, Hsu K, Sorooshian S (2011) Hydrologic evaluation of satellite precipitation products over a mid-size basin. J Hydrol 397:225–237. doi:10.1016/j.jhydrol.2010.11.043

    Google Scholar 

  • Beighley RE et al. (2011) Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol Process 25:3216–3229. doi:10.1002/hyp.8045

    Google Scholar 

  • Bhatt B, Nakamura K (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar Monthly weather review 133:149–165 doi:10.1175/MWR-2846.1

  • Bitew MM, Gebremichael M (2011) Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour Res 47:W06526. doi:10.1029/2010WR009917

    Google Scholar 

  • Chen S et al. (2013a) Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States. Water Resour Res 49:8174–8186. doi:10.1002/2012WR012795

    Google Scholar 

  • Chen Y, Del Genio AD, Chen J (2007) The tropical atmospheric El Niño signal in satellite precipitation data and a global climate model. J Clim 20:3580–3601. doi:10.1175/JCLI4208.1

    Google Scholar 

  • Chen Y, Ebert EE, Walsh KJE, Davidson NE (2013b) Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J Geophys Res Atmos 118:2184–2196. doi:10.1002/jgrd.50250

    Google Scholar 

  • Chokngamwong R, Chiu LS (2008) Thailand daily rainfall and comparison with TRMM products. J Hydrometeorol 9:256–266. doi:10.1175/2007JHM876.1

    Google Scholar 

  • Curtis S, Adler R (2000) ENSO indices based on patterns of satellite-derived precipitation. J Clim 13:2786–2793. doi:10.1175/1520-0442(2000)013 < 2786:EIBOPO > 2.0.CO;2

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–88. J Clim 10:2943–2962. doi:10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2

    Google Scholar 

  • Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soc 88:47–64. doi:10.1175/BAMS-88-1-47

    Google Scholar 

  • Ferraro RR, Smith EA, Berg W, Huffman GJ (1998) A screening methodology for passive microwave precipitation retrieval algorithms. J Atmos Sci 55:1583–1600. doi:10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2

    Google Scholar 

  • Gebremichael M, Krajewski WF, Morrissey M, Langerud D, Huffman GJ, Adler R (2003) Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J Appl Meteorol 42:1837–1848. doi:10.1175/1520-0450(2003)042<1837:EUAOGM>2.0.CO;2

    Google Scholar 

  • Giglio L, Kendall JD, Tucker CJ (2000) Remote sensing of fires with the TRMM VIRS. Int J Remote Sens 21:203–207. doi:10.1080/014311600211109

    Google Scholar 

  • Habib E, Henschke A, Adler RF (2009) Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana USA. Atmos Res 94:373–388. doi:10.1016/j.atmosres.2009.06.015

    Google Scholar 

  • Haile AT, Habib E, Elsaadani M, Rientjes T (2013) Inter-comparison of satellite rainfall products for representing rainfall diurnal cycle over the Nile basin. Int J Appl Earth Obs Geoinf 21:230–240. doi:10.1016/j.jag.2012.08.012

    Google Scholar 

  • Hamid EY, Kawasaki Z-I, Mardiana R (2001) Impact of the 1997–98 El Niño Event on lightning activity over Indonesia. Geophys Res Lett 28:147–150. doi:10.1029/2000GL011374

    Google Scholar 

  • Hirose M, Nakamura K (2005) Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J Geophys Res-Atmos 110:D05106. doi:10.1029/2004JD004815

    Google Scholar 

  • Hong Y, Adler RF, Hossain F, Curtis S, Huffman GJ (2007) A first approach to global runoff simulation using satellite rainfall estimation. Water Resour Res 43:W08502. doi:10.1029/2006WR005739

    Google Scholar 

  • Hossain F, Huffman GJ (2008) Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J Hydrometeorol 9:563–575. doi:10.1175/2007JHM925.1

    Google Scholar 

  • Huffman GJ et al. (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Google Scholar 

  • Jamandre CA, Narisma GT (2013) Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmos Res 122:599–608. doi:10.1016/j.atmosres.2012.06.024

    Google Scholar 

  • Jiang S, Ren L, Hong Y, Yong B, Yang X, Yuan F, Ma M (2012) Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J Hydrol 452:213–225. doi:10.1016/j.jhydrol.2012.05.055

    Google Scholar 

  • Joyce R, Arkin PA (1997) Improved estimates of tropical and subtropical precipitation using the GOES precipitation index. J Atmos Ocean Technol 14:997–1011. doi:10.1175/1520-0426(1997)014<0997:IEOTAS>2.0.CO;2

    Google Scholar 

  • Liu YY, van Dijk AIJM, de Jeu RAM, Holmes TRH (2009) An analysis of spatiotemporal variations of soil and vegetation moisture from a 29-year satellite-derived data set over mainland Australia. Water Resour Res 45:W07405. doi:10.1029/2008WR007187

    Google Scholar 

  • Lo Conti F, Hsu K-L, Noto LV, Sorooshian S (2014) Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos Res 138:189–204. doi:10.1016/j.atmosres.2013.11.011

    Google Scholar 

  • Mao KB, Tang HJ, Zhang LX, Li MC, Guo Y, Zhao DZ (2008) A method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI data. Int J Remote Sens 29:2903–2923. doi:10.1080/01431160701442104

    Google Scholar 

  • Moazami S, Golian S, Kavianpour MR, Hong Y (2013) Comparison of PERSIANN and V7 TRMM multi-satellite precipitation analysis (TMPA) products with rain gauge data over Iran. Int J Remote Sens 34:8156–8171. doi:10.1080/01431161.2013.833360

    Google Scholar 

  • Ochoa A, Pineda L, Willems P, Crespo P (2014) Evaluation of TRMM 3B42 (TMPA) precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean basin into Ecuador and Peru Hydrol Earth. Syst Sci 11:411–449. doi:10.5194/hessd-11-411-2014

    Google Scholar 

  • Pan M, Li H, Wood E (2010) Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour Res 46:W09535. doi:10.1029/2009WR008290

    Google Scholar 

  • Peña-Arancibia JL, van Dijk AIJM, Renzullo LJ, Mulligan M (2013) Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and South and East Asia. J Hydrometeorol 14:1323–1333. doi:10.1175/JHM-D-12-0132.1

    Google Scholar 

  • Prasetia R, As-syakur AR, Osawa T (2013) Validation of TRMM Precipitation Radar satellite data over Indonesian region. Theor Appl Climatol 112:575–587. doi:10.1007/s00704-012-0756-1

    Google Scholar 

  • Ramarohetra J, Sultan B, Baron C, Gaiser T, Gosset M (2013) How satellite rainfall estimate errors may impact rainfed cereal yield simulation in West Africa. Agric For Meteorol 180:118–131. doi:10.1016/j.agrformet.2013.05.010

    Google Scholar 

  • Rozante JR, Cavalcanti IFA (2008) Regional Eta model experiments: SALLJEX and MCS development. J Geophys Res-Atmos 113:D17106. doi:10.1029/2007JD009566

    Google Scholar 

  • Schaefer JT (1990) The critical success index as an indicator of warning skill. Weather Forecast 5:570–575. doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2

    Google Scholar 

  • Scheel M, Rohrer M, Huggel C, Santos Villar D, Silvestre E, Huffman G (2011) Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15:2649–2663. doi:10.5194/hess-15-2649-2011

    Google Scholar 

  • Serra YL, McPhaden MJ (2003) Multiple time-and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J Appl Meteorol 42:1045–1059. doi:10.1175/1520-0450(2003)0422.0.CO;2

    Google Scholar 

  • Simpson J, Adler RF, North GR (1988) A proposed tropical rainfall measuring mission (TRMM) satellite. Bull Am Meteorol Soc 69:278–295. doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2

    Google Scholar 

  • Stephen H, Ahmad S, Piechota TC, Tang C (2010) Relating surface backscatter response from TRMM precipitation radar to soil moisture: results over a semi-arid region. Hydrol Earth Syst Sci 14:193–204. doi:10.5194/hess-14-193-2010

    Google Scholar 

  • Su F, Hong Y, Lettenmaier DP (2008) Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol 9:622–640. doi:10.1175/2007JHM944.1

    Google Scholar 

  • Weber U et al. (2009) The interannual variability of Africa’s ecosystem productivity: a multi-model analysis. Biogeosciences 6:285–295. doi:10.5194/bg-6-285-2009

    Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences vol 91. INTERNATIONAL GEOPHYSICS SERIES, Second edn. Academic Press, San Diego

    Google Scholar 

  • Xie P, Rudolf B, Schneider U, Arkin PA (1996) Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J Geophys Res-Atmos 101:19023–19034. doi:10.1029/96JD01553

    Google Scholar 

  • Xue X et al. (2013) Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J Hydrol 499:91–99. doi:10.1016/j.jhydrol.2013.06.042

    Google Scholar 

  • Yong B et al. (2012) Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J Geophys Res-Atmos 117:D09108. doi:10.1029/2011JD017069

    Google Scholar 

  • Yong B et al. (2010) Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin. Chin Water Resour Res 46:W07542. doi:10.1029/2009WR008965

    Google Scholar 

Download references

Acknowledgments

The research was funded by Water Pollution Control and Treatment of Major Science and Technology Projects (2012ZX07202-008), Natural Science Foundation of China (31070546), and Natural Science Foundation of China (30970483). We are grateful to Hydrological Department, Liaoning which provides rain gauge data. Researchers and colleagues at Institute of Applied Ecology, Chinese Academy of Sciences are highly appreciated for their valuable comments on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Jin, C., Wang, A. et al. Comprehensive precipitation evaluation of TRMM 3B42 with dense rain gauge networks in a mid-latitude basin, northeast, China. Theor Appl Climatol 126, 659–671 (2016). https://doi.org/10.1007/s00704-015-1598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1598-4

Keywords

Navigation