Skip to main content
Log in

RETRACTED ARTICLE: Temperature-based estimation of global solar radiation using soft computing methodologies

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

This article was retracted on 09 March 2020

This article has been updated

Abstract

Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures (T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T maxT min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 09 March 2020

    The Editor-in-Chief has retracted this article [1] because validity of the content of this article cannot be verified. This article showed evidence of substantial text overlap (most notably with the articles cited [2, 3, 4, 5 and 6]) and authorship manipulation.

References

  • Abdalla YAG (1994) New correlation of global solar radiation with meteorological parameters for Bahrain. Int J Sol Energy 16:111–120

    Google Scholar 

  • Abraha MG, Savage MJ (2008) Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agric For Meteorol 148:401–416

    Article  Google Scholar 

  • Almorox J, Hontoria C, Benito M (2011) Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Appl Energy 88:1703–1709

    Article  Google Scholar 

  • Ananthakrishnan S, Prasad R, Stallard D, Natarajan P (2013) Batch-mode semi-supervised active learning for statistical machine translation. Comput Speech Lang 27:397–406

    Article  Google Scholar 

  • Bahel V, Bakhsh H, Srinivasan R (1987) A correlation for estimation of global solar radiation. Energy 12:131–135

    Article  Google Scholar 

  • Bakirci K (2009) Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34:485–501

    Article  Google Scholar 

  • Bannani FK, Sharif TA, Ben-Khalifa AOR (2006) Estimation of monthly average solar radiation in Libya. Theor Appl Climatol 83:211–215

    Article  Google Scholar 

  • Behrang MA, Assareh E, Noghrehabadi AR, Ghanbarzadeh A (2011) New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36:3036–3049

    Article  Google Scholar 

  • Benghanem M, Mellit A (2014) A simplified calibrated model for estimating daily global solar radiation in Madinah, Saudi Arabia. Theor Appl Climatol 115:197–205

    Article  Google Scholar 

  • Chen JL, Li GS (2014) Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables. Theor Appl Climatol 115:627–638

  • Chen JL, Li GS, Wu SJ (2013a) Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Convers Manag 75:311–318

    Article  Google Scholar 

  • Chen SX, Gooi HB, Wang MQ (2013b) Solar radiation forecast based on fuzzy logic and neural networks. Renew Energy 60:195–201

    Article  Google Scholar 

  • Dos Santos CM, De Souza JL, Ferreira Junior RA, Tibab C, de Melo RO, Lyra GB et al (2014) On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy 71:388–398

    Article  Google Scholar 

  • Duffie JA, Beckman WA (2006) Solar engineering of thermal processes, 3rd edn. Wiley, New York

    Google Scholar 

  • Duzen H, Aydin H (2012) Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey). Energy Convers Manag 58:35–46

    Article  Google Scholar 

  • Flores JL, Karam HA, Filho EPM, Filho AJP (2015) Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil. Theor Appl Climatol. doi:10.1007/s00704-014-1369-7

    Article  Google Scholar 

  • Garg HP, Garg ST (1982) Prediction of global solar radiation from bright sunshine hours and other meteorological parameters, Solar-India, Proceedings of the National Solar Energy Convention. Allied Publishers, New Delhi, pp 1004–1007

    Google Scholar 

  • Jang JSR (1991) Fuzzy modeling using generalized neural networks and Kalman filter algorithm. Proc Ninth Natl Conf Artif Intell (AAAI-91), 762–67

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. P IEEE 83:378–406

    Article  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice Hall

  • Jiang Y (2009) Estimation of monthly mean daily diffuse radiation in China. Appl Energy 86:1458–1464

    Article  Google Scholar 

  • Kalogirou SA (2009) Solar energy engineering: processes and systems. 1st ed. Elsevier Inc.

  • Khorasanizadeh H, Mohammadi K, Mostafaeipour A (2014) Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran Energy Convers Manage 78:805–814

  • Li MF, Fan L, Liu HB, Guo PT, Wu W (2013) A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China. J Atmos Sol Terr Phys 92:145–150

    Article  Google Scholar 

  • Liu X, Mei X, Li Y, Wang Q, Jensen JR, Zhang Y et al (2009) Evaluation of temperature-based global solar radiation models in China. Agric For Meteorol 149:1433–1446

    Article  Google Scholar 

  • Mellit A, Hadjarab A, Khorissi N, Salhi H (2007) An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature. Power Eng Soc Gen Meet IEEE doi:10.1109/PES.2007.386131. 1–6

  • Meza F, Varas E (2000) Estimation of mean monthly solar global radiation as a function of temperature. Agric For Meteorol 100:231–241

    Article  Google Scholar 

  • Moghaddamnia A, Remesan R, Hassanpour Kashani M, Mohammadi M, Han D, Piri J (2009) Comparison of LLR, MLP, Elman, NNARX and ANFIS models—with a case study in solar radiation estimation. J Atmos Sol Terr Phys 71:975–982

    Article  Google Scholar 

  • Mohammadi K, Shamshirband S, Tong CW, Alam KA, Petkovic D (2015a) Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Convers Manag 93:406–413

    Article  Google Scholar 

  • Mohammadi K, Shamshirband S, Anisi MH, Alam KA, Petkovic D (2015b) Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Convers Manag 91:433–441

    Article  Google Scholar 

  • Mohammadi K, Shamshirband S, Tong CW, Arif M, Petkovic D, Ch S (2015c) A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers Manage 92:162–171

  • Mohandes MA (2012) Modeling global solar radiation using Particle Swarm Optimization (PSO). Sol Energy 86:3137–3145

    Article  Google Scholar 

  • Mohanty S (2014) ANFIS based prediction of monthly average global solar radiation over Bhubaneswar (State of Odisha). Int J Ethics Eng Manag Educ ISSN: 2348-4748, 1

  • Mubiru J, Banda EJKB (2007) Performance of empirical correlations for predicting monthly mean daily diffuse solar radiation values at Kampala, Uganda. Theor Appl Climatol 88:127–131

    Article  Google Scholar 

  • Mubiru J, Banda EJKB, D’Ujanga F, Senyonga T (2007) Assessing the performance of global solar radiation empirical formulations in Kampala, Uganda. Theor Appl Climatol 87:179–184

    Google Scholar 

  • Nikolic V, Shamshirband S, Petkovic D, Mohammadi K, Cojbašic Z, Altameem TA et al (2015) Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy 80:361–372

    Article  Google Scholar 

  • Ododo JC, Sulaiman AT, Aidan J, Yguda MM, Ogbu FA (1995) The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria. Renew Energy 6:751–763

    Google Scholar 

  • Ojosu JO, Komolafe LK (1987) Models for estimating solar radiation availability in South Western Nigeria. Nig J Sol Energy 6:69–77

    Google Scholar 

  • Pan T, Wu S, Dai E, Liu Y (2013) Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China. Appl Energy 107:384–393

    Article  Google Scholar 

  • Piri J, Kisi O (2015) Modelling solar radiation reached to the Earth using ANFIS, NN-ARX, and empirical models (case studies: Zahedan and Bojnurd stations). J Atmos Sol Terr Phys 123:39–47

    Article  Google Scholar 

  • Piri J, Shamshirband SH, Petkovic D, Tong CW, Rehman MH (2015) Prediction of the solar radiation on the Earth using support vector regression technique. Infrared Phys Technol 68:179–185

    Article  Google Scholar 

  • Rajasekaran S, Gayathri S, Lee TL (2008) Support vector regression methodology for storm surge predictions. Ocean Eng 35:1578–1587

    Article  Google Scholar 

  • Rizwan M, Jamil M, Kirmani S, Kothari DP (2014) Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy 70:685–691

    Google Scholar 

  • Roubos JA, Mollov S, Babuška R, Verbruggen HB (1999) Fuzzy model-based predictive control using Takagi–Sugeno models. Int J Approx Reason 22:3–30

    Article  Google Scholar 

  • Scholkopf B, Sung K, Burges C, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. Signal Process IEEE Trans 45:2758–2765

    Article  Google Scholar 

  • Shamim MA, Bray M, Remesan R, Han D (2015) A hybrid modelling approach for assessing solar radiation. Theor Appl Climatol. doi:10.1007/s00704-014-1301-1

    Article  Google Scholar 

  • Shamshirband S, Petkovic D, Hashim R, Motamedi S, Anuar NB (2014) An appraisal of wind turbine wake models by adaptive neuro-fuzzy methodology. Int J Electr Power 63:618–624

    Article  Google Scholar 

  • Sugeno M, Kang GT (1998) Structure identification of fuzzy model. Fuzzy Sets Syst 28:15–33

    Article  Google Scholar 

  • Takagi T, Sugeno M (1983) Derivation of fuzzy control rules from human operator’s control actions. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation, and Decision Analysis, 55–60

  • Trabea AA, Shaltout MAM (2000) Correlation of global solar radiation with meteorological parameters over Egypt. Renew Energy 21:297–308

    Article  Google Scholar 

  • Vapnik V (2000) The nature of statistical learning theory. Springer

  • Vapnik VN, Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Vapnik V, Golowich SE, Smola AJ (1996) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287

    Google Scholar 

  • Wei Z, Tao T, ZhuoShu D, Zio E (2013) A dynamic particle filter-support vector regression method for reliability prediction. Reliab Eng Syst Saf 119:109–116

    Article  Google Scholar 

  • Wu Z, Du H, Zhao D, Li M, Meng X, Zong S (2012) Estimating daily global solar radiation during the growing season in Northeast China using the Ångström–Prescott model. Theor Appl Climatol 108:495–503

    Article  Google Scholar 

  • Yacef R, Mellit A, Belaid S, Sen Z (2014) New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaїa, Algeria. Energy Convers Manag 79:606–615

    Article  Google Scholar 

  • Yang H, Huang K, King I, Lyu MR (2009) Localized support vector regression for time series prediction. Neurocomputing 72:2659–2669

    Article  Google Scholar 

  • Ye Q, Zhang Z, Law R (2009) Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst Appl 36:6527–6535

    Article  Google Scholar 

  • Zhang L, Zhou WD, Chang PC, Yang JW, Li FZ (2013) Iterated time series prediction with multiple support vector regression models. Neurocomputing 99:411–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasra Mohammadi.

Additional information

The Editor-in-Chief has retracted this article because validity of the content of this article cannot be verified. This article showed evidence of substantial text overlap (most notably with five articles; see retraction note for details) and authorship manipulation. Shahaboddin Shamshirband disagrees with this retraction. Authors Kasra Mohammadi, Amir Seyed Danesh, Mohd Shahidan Abdullah, and Mazdak Zamani have not responded to correspondence about this retraction.

Appendices

Appendix A

The daily clearness index, KT, can be computed by (Duffie and Beckman 2006; Kalogirou 2009)

$$ {K}_T=\frac{H}{H_o} $$

The Ho, is expressed as (Duffie and Beckman 2006; Kalogirou 2009)

$$ \begin{array}{c}\hfill {H}_o=\frac{24\times 3600}{\pi }{G}_{\mathrm{s}\mathrm{c}}\left(1+0.033 \cos\;\frac{360\kern0.1em {n}_{\mathrm{day}}}{365}\right)\hfill \\ {}\hfill \times \left( \cos \varphi\;\cos \delta\;\sin {\omega}_{\mathrm{s}}+\frac{\pi {\omega}_{\mathrm{s}}}{180}\; \sin \varphi \sin \delta \right)\hfill \end{array} $$

where G sc is the solar constant, assumed equal to 1367 W/m2, and n day is the day number of the year, counted from the first of January. δ and ω s are the daily solar declination and sunset hour angles, respectively, as (Duffie and Beckman 2006)

$$ \begin{array}{c}\hfill \delta =23.45\; \sin \left(\frac{\left({n}_{\mathrm{day}}+284\right)360}{365}\right)\hfill \\ {}\hfill {\omega}_{\mathrm{s}}={ \cos}^{-1}\left(- \tan \varphi\;\tan \delta \right)\hfill \end{array} $$

Appendix B

The MABE, as an accuracy level estimator, gives the mean absolute value of bias error. The MABE is obtained by

$$ \mathrm{MABE}=\frac{1}{N}{\displaystyle \sum_{i=1}^N\left|{H}_{i,c}-{H}_{i,m}\right|} $$

where H i,c is the ith calculated solar radiation value by models, and Hi,m is the ith measured solar radiation value. Also, N is the total number of observations.

The RMSE, as a widely used indicator, determines the precision of the model by comparing the deviation between the estimated and real data. The RMSE always has a positive value and is calculated by

$$ \mathrm{RMSE}=\sqrt{\frac{1}{N}{{\displaystyle \sum_{i=1}^N\left({H}_{i,c}-{H}_{i,m}\right)}}^2} $$

The R indicates the strength of a linear relationship between the measured and the estimated values and is obtained by

$$ R=\frac{{\displaystyle \sum_{i=1}^N\left({H}_{i,c}-{H}_{c,\mathrm{a}\kern0.1em \mathrm{v}\kern0.1em \mathrm{g}}\right).}\left({H}_{i,m}-{H}_{m,\mathrm{a}\kern0.1em \mathrm{v}\kern0.1em \mathrm{g}}\right)}{\sqrt{\left[{\displaystyle \sum_{i=1}^N{\left({H}_{i,c}-{H}_{c,\mathrm{a}\kern0.1em \mathrm{v}\kern0.1em \mathrm{g}}\right)}^2}\right]\left[{\displaystyle \sum_{i=1}^N{\left({H}_{i,m}-{H}_{m,\mathrm{a}\kern0.1em \mathrm{v}\kern0.1em \mathrm{g}}\right)}^2}\right]}} $$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, K., Shamshirband, S., Danesh, A.S. et al. RETRACTED ARTICLE: Temperature-based estimation of global solar radiation using soft computing methodologies. Theor Appl Climatol 125, 101–112 (2016). https://doi.org/10.1007/s00704-015-1487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1487-x

Keywords

Navigation