Skip to main content

Advertisement

Log in

Stochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

We propose a new method to estimate autoregressive model parameters of the precipitation amount process using the relationship between original and transformed moments derived through a moment generating function. We compare the proposed method with the traditional parameter estimation method, which uses transformed data, by modeling precipitation data from Denver International Airport (DIA), CO. We test the applicability of the proposed method (M2) to climate change analysis using the RCP 8.5 scenario. The modeling results for the observed data and future climate scenario indicate that M2 reproduces key historical and targeted future climate statistics fairly well, while M1 presents significant bias in the original domain and cannot be applied to climate change analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aronica GT, Bonaccorso B (2013) Climate change effects on hydropower potential in the Alcantara River Basin in Sicily (Italy). Earth Interact 17:1–22. doi:10.1175/2012EI000508.1

    Article  Google Scholar 

  • Berne A, Delrieu G, Creutin JD, Obled C (2004) Temporal and spatial resolution of rainfall measurements required for urban hydrology. J Hydrol 299:166–179

    Article  Google Scholar 

  • Brekke L, Thrasher BL, Maurer EP, Pruitt T (2013) Downscaled CMIP3 and CMIP5 climate and hydrology projections. Bureau of Reclamation, Washington

    Google Scholar 

  • Burlando P, Rosso R (1991) Extreme storm rainfall and climatic change. Atmos Res 27:169–189

    Article  Google Scholar 

  • Burlando P, Rosso R (1996) Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J Hydrol 187:45–64. doi:10.1016/S0022-1694(96)03086-7

    Article  Google Scholar 

  • Dennett MD, Rodgers JA, Keatinge JDH (1983) Simulation of a rainfall record for the site of a new agricultural development: an example from Northern Syria. Agric Meteorol 29:247–258. doi:10.1016/0002-1571(83)90086-9

    Article  Google Scholar 

  • Eagleson PS (1978) Climate, soil and vegetation: I. Introduction to water balance dynamics. Water Resour Res 14:705–712

    Article  Google Scholar 

  • Gabriel KR, Neumann J (1962) A Markov chain model for daily rainfall occurrence at Tel Aviv. Q J R Meteorol Soc 88:90–95. doi:10.1002/qj.49708837511

    Article  Google Scholar 

  • Guttorp P, Minin VN (1995) Stochastic Modeling of Scientific Data. Taylor & Francis, Boca Ratan, p 384

  • Hannachi A (2012) Intermittency, autoregression and censoring: a first-order AR model for daily precipitation. Meteorol Appl. doi:10.1002/met.1353

    Google Scholar 

  • Hingray B, Ben Haha M (2005) Statistical performances of various deterministic and stochastic models for rainfall series disaggregation. Atmos Res 77:152–175

    Article  Google Scholar 

  • Hughes JP, Guttorp P, Charles SP (1999) A non-homogeneous hidden Markov model for precipitation occurrence. J R Stat Soc Ser C Appl Stat 48:15–30

    Article  Google Scholar 

  • Katz RW (1996) Use of conditional stochastic models to generate climate change scenarios. Clim Chang 32:237–255

    Article  Google Scholar 

  • Katz RW (1999) Moments of power transformed time series. Environmetrics 10:301–307

    Article  Google Scholar 

  • Katz RW, Parlange MB (1993) Effects of an index of atmospheric circulation on stochastic properties of precipitation. Water Resour Res 29:2335–2344

    Article  Google Scholar 

  • Katz RW, Parlange MB (1995) Generalizations of chain-dependent processes: application to hourly precipitation. Water Resour Res 31:1331–1341

    Article  Google Scholar 

  • Katz RW, Zheng XG (1999) Mixture model for overdispersion of precipitation. J Clim 12:2528–2537

    Article  Google Scholar 

  • Koutsoyiannis D, Onof C (2001) Rainfall disaggregation using adjusting procedures on a Poisson cluster model. J Hydrol 246:109–122

    Article  Google Scholar 

  • Lall U, Rajagopalan B, Tarboton DG (1996) A nonparametric wet/dry spell model for resampling daily precipitation. Water Resour Res 32:2803–2823

    Article  Google Scholar 

  • Lebel T, Braud I, Creutin JD (1998) A space-time rainfall disaggregation model adapted to Sahelian mesoscale convective complexes. Water Resour Res 34:1711–1726

    Article  Google Scholar 

  • Lee T, Ouarda TBMJ, Jeong C (2012) Nonparametric multivariate weather generator and an extreme value theory for bandwidth selection. J Hydrol 452–453:161–171. doi:10.1016/j.jhydrol.2012.05.047

    Article  Google Scholar 

  • Marani M (2003) On the correlation structure of continuous and discrete point rainfall. Water Resour Res 39:SWC21–SWC28

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14:1125–1138. doi:10.5194/hess-14-1125-2010

    Article  Google Scholar 

  • Mezghani A, Hingray B (2009) A combined downscaling-disaggregation weather generator for stochastic generation of multisite hourly weather variables over complex terrain: Development and multi-scale validation for the Upper Rhone River Basin. J Hydrol 377:245–260. doi:10.1016/j.jhydrol.2009.08.033

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190

    Article  Google Scholar 

  • Roldan J, Woolhiser DA (1982) Stochastic daily precipitation models: 1. A comparison of occurrence processes. Water Resour Res 18:1451–1459

    Article  Google Scholar 

  • Salas JD (1993) In: Maidment DR (ed) Handbook of Hydrology. McGraw-Hill, New York 19.1-19.72.

  • Todorovic P, Woolhiser DA (1975) Stochastic model of n-day precipitation. J Appl Meteorol 14:17–24

    Article  Google Scholar 

  • Wilby RL (1994) Stochastic weather type simulation for regional climate change impact assessment. Water Resour Res 30:3395–3402

    Article  Google Scholar 

  • Wilks DS (1999) Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric For Meteorol 93:153–169

    Article  Google Scholar 

  • Woolhiser DA, Roldan J (1982) Stochastic daily precipitation models: 2. A comparison of distributions of amounts. Water Resour Res 18:1461–1468

    Article  Google Scholar 

  • Yoon S, Jeong C, Lee T (2013) Application of harmony search to design storm estimation from probability distribution models. J Appl Math 2013:11

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge that this work was supported by the National Research Foundation of Korea (NRF), Grant (MEST) (2015R1A1A1A05001007), funded by the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesam Lee.

Appendix 1: Example of M2 parameter estimation procedure

Appendix 1: Example of M2 parameter estimation procedure

As an example, the parameter estimation procedure of M2 for the exponent c = 2 is presented below. The mean, variance, and lag-1 correlation for the original variable Z can be expressed as:

$$ {\mu}_Z=E\left({Z}_t\right)=E\left({N}_t^2\right)=\gamma \left(2,0\right)={\mu}_N\gamma \left(1,0\right)+\left(2-1\right){\sigma}_N^2\gamma \left(0,0\right)={\mu}_N^2+{\sigma}_N^2 $$
(A1)
$$ \begin{array}{l}{\sigma}_Z^2=E{Z}^2-{(EZ)}^2=E\left({N}^4\right)-{\left(E\left({N}^2\right)\right)}^2=\gamma \left(4,0\right)-{\left(\gamma \left(2,0\right)\right)}^2={\mu}_N\gamma \left(3,0\right)+\hfill \\ {}3{\sigma}_N^2\gamma \left(2,0\right)-{\left({\mu}_N^2+{\sigma}_N^2\right)}^2\hfill \end{array} $$
(A2)
$$ {\rho}_{1,z}=\frac{\gamma \left(2,2\right)-{\left(\gamma \left(2,0\right)\right)}^2}{\gamma \left(4,0\right)-{\left(\gamma \left(2,0\right)\right)}^2} $$
(A3)
$$ \gamma \left(2,2\right)={\mu}_N\gamma \left(1,2\right)+2{\sigma}_N^2{\rho}_1{{}_{,}}_N\gamma \left(1,1\right)+\gamma \left(0,2\right) $$
(A4)

Here, μ z , σ 2 Z , and ρ 1,z are known values from the original amount data employing Eqs. (4)–(6), but for the original data before transformation. \( {\widehat{\mu}}_N \) and \( {\widehat{\sigma}}_N^2 \) are estimated with two known values of μ Z and σ 2 Z by numerically solving Eqs. (A1) and (A2). Note that Eq. (A2) is a function of μ Z and σ 2 Z .

Furthermore, ρ 1,N is numerically solved with Eqs. (A3) and (A4) after estimating \( {\widehat{\mu}}_N \) and \( {\widehat{\sigma}}_N^2 \). Additionally, \( {\widehat{\sigma}}_{\varepsilon}^2 \) is estimated from Eq. (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T. Stochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis. Theor Appl Climatol 124, 91–102 (2016). https://doi.org/10.1007/s00704-015-1395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1395-0

Keywords

Navigation