Skip to main content

Advertisement

Log in

On the subarctic North Atlantic cooling due to global warming

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Various ocean reanalysis data reveal that the subarctic Atlantic sea surface temperature (SST) has been cooling during the twentieth century. A similar cooling pattern is found in the doubling CO2 experiment obtained from the CMIP3 (coupled model intercomparison project third phase) compared to the pre-industrial experiment. Here, in order to investigate the main driver of this cooling, we perform the heat budget analysis on the subarctic Atlantic upper ocean temperature. The net surface heat flux associated with the increased concentration of greenhouse gases heats the subarctic ocean surface. In the most of models, the longwave radiation, latent heat flux, and sensible heat flux exert a warming effect, and the shortwave radiation exerts a cooling effect. On the other hand, the thermal advection by the meridional current reduces the subarctic upper ocean temperature in all models. This cold advection is attributed to the weakening of the meridional overturning circulation, which is related to the reduction in the ocean surface density. In particular, greater warming of the surface air than of the sea surface results in the reduction of surface evaporation and thereby enhanced freshening of the ocean surface water, while precipitation change was smaller than evaporation change. The thermal advections by both the wind-driven Ekman current and the density-driven geostrophic current contribute to cooling in most of the models, where the heat transport by the geostrophic current tends to be larger than that by the Ekman current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An S-I, Kug J-S, Ham Y-G, Kang I-S (2008) Successive modulation of ENSO to the future greenhouse warming. J Clim 21(1):3–21. doi:10.1175/2007jcli1500.1

    Article  Google Scholar 

  • An S-I, Kim J-W, Im S-H, Kim B-M, Park J-H (2012) Recent and Future Sea Surface Temperature Trends in Tropical Pacific Warm Pool and Cold Tongue Regions, Climate Dynamics, published online

  • Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res 110(C9):C09006. doi:10.1029/2004jc002817

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Kwon Y-O, Tribbia JJ, Phillips AS, Hurrel JW (2012) Variability of the Atlantic meridional overturning circulation in CCSM4. J Clim 25:5153–5172

    Article  Google Scholar 

  • Diansky NA, Volodin EM (2002) Simulation of present-day climate with a coupled atmosphere–ocean general circulation model. Izv Atmos Ocean Phys (Engl Transl) 38:732–747

    Google Scholar 

  • Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part 1: formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Gregory JM et al (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12)

  • Hall MM, Bryden H (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res 29:339–359

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies. Clim Dyn 9:287–302

    Article  Google Scholar 

  • K-1 Developers (2004) K-1 coupled model (MIROC) description. K-1 Technical Report 1. Center for Climate System Research, University of Tokyo, Tokyo, Japan

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(2):RG2001. doi:10.1029/2004rg000166

    Article  Google Scholar 

  • Legutke S, Voss R (1999) The Hamburg Atmosphere–Ocean Coupled Circulation Model ECHO-G. Technical report, No. 18, German Climate Computer Centre (DKRZ), Hamburg, 62 pp

  • Leloup J, Clement A (2009) Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys Res Lett 36(14):L14802. doi:10.1029/2009gl038609

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554

    Article  Google Scholar 

  • Pielke RA Sr, Davey CA, Niyogi D, Fall S, Steinweg-Woods J, Hubbard K, Lin X, Cai M, Lim Y-K, Li H, Nielsen-Gammon J, Gallo K, Hale R, Mahmood R, Foster S, McNider RT, Blanken P (2007) Unresolved issues with the assessment of multidecadal global land surface temperature trends. J Geophys Res 112(D24):D24S08. doi:10.1029/2006jd008229

    Article  Google Scholar 

  • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19(3):446–469. doi:10.1175/jcli3637.1

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17(19):3761–3774

    Article  Google Scholar 

  • Russell GL, Rind D (1999) Response to CO2 transient increase in the GISS coupled model: regional coolings in a warming climate. J Clim 12(2):531–539

    Article  Google Scholar 

  • Salas-Mélia D, Chauvin F, Déqué M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model, CNRM working note 103

  • Schmidt GA et al (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192. doi:10.1175/JCLI3612.1

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17(12):2466–2477

    Article  Google Scholar 

  • Stouffer RJ, Broccoli AJ, Delworth TL, Dixon KW, Gudgel R, Held I, Hemler R, Knutson T, Lee H-C, Schwarzkopf MD, Soden B, Spelman MJ, Winton M, Zeng F (2006) GFDL’s CM2 global coupled climate models. Part IV: idealized climate response. J Clim 19(5):723–740. doi:10.1175/jcli3632.1

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting. Clim Dyn 29(5):521–534. doi:10.1007/s00382-007-0250-0

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443. doi:10.1175/1520-0442(2001)014<3433:eomaao>2.0.co;2

    Article  Google Scholar 

  • Watanabe M, Kimoto M, Nitta T, Kachi M (1999) A comparison of decadal climate oscillations in the North Atlantic detected in observations and a coupled GCM. J Clim 12(9):2920–2940. doi:10.1175/1520-0442(1999)012<2920:acodco>2.0.co;2

    Article  Google Scholar 

  • Woollings T, Hannachi A, Hoskins B, Turner A (2010) A regime view of the North Atlantic oscillation and its response to anthropogenic forcing. J Clim 23(6):1291–1307. doi:10.1175/2009jcli3087.1

    Article  Google Scholar 

  • Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Giese B (2012) Enhanced warming over the global subtropical western boundary currents. Nature Clim Change 2(3):161–166, http://www.nature.com/nclimate/journal/v2/n3/abs/nclimate1353.html#supplementary-information

    Article  Google Scholar 

  • Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) The New Meteorological Research Institute Coupled GCM (MRI-CGCM2) Model Climate and Variability. Pap Meteorol Geophys 51(2):47–88

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; No. 2011-0015208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Il An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., An, SI. On the subarctic North Atlantic cooling due to global warming. Theor Appl Climatol 114, 9–19 (2013). https://doi.org/10.1007/s00704-012-0805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0805-9

Keywords

Navigation