Skip to main content

Advertisement

Log in

Spatial and temporal analysis of climate change in Hispañola

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Climate change in Hispañola is studied since 1900 using a variety of datasets. The longer station-observed temperature record has a significant trend of 0.012 °C/year, while the shorter reanalysis datasets exhibit faster warming, suggesting accelerating greenhouse radiative absorption and Hadley circulation. Rainfall trends are insignificant in the observed period, but a CMIP5 model simulation predicts a significant drying trend. The spatial pattern of climate trends was mapped with reanalysis fields and indicates a faster rate of warming over the eastern half of the island, where observations are dense and the drying trend is greatest. Northeasterly trade winds strengthen on the Atlantic side of the island. While trends intensify in the satellite era compared to the earlier 20th century, part of that effect is ascribed to an upturn in the Atlantic Multi-decadal Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfaro E, Amador JA (1997) Variability and climate change over Costa Rica. Meteorol Oceanogr Topics 4(1):52–60

    Google Scholar 

  • Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201

    Article  Google Scholar 

  • Battisti D, Bitz M, Moritz R (1997) Do general circulation models underestimate the natural variability in the Arctic climate? J Clim 10:1909–1920

    Article  Google Scholar 

  • Berger A, Tricot C, Gallee H, Loutre MF (1993) Water vapor, CO2 and insolation over the last glacial–interglacial cycles. Phill Trans R Soc London B 341:253–261

    Article  Google Scholar 

  • Cess RD et al (1993) Uncertainties in CO2 radiative forcing in atmospheric general circulation models. Science 262:1252–1255

    Article  Google Scholar 

  • Chen C-T, Ramaswamy V (1996a) Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. I. Globally uniform perturbations. J Clim 9:1385–1402

    Article  Google Scholar 

  • Chen C-T, Ramaswamy V (1996b) Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. II. Globally uniform perturbations. J Clim 9:2788–2801

    Article  Google Scholar 

  • Chen AA, Taylor M (2002) Investigating the link between early season Caribbean rainfall and the El Niño + 1 year. Int J Climatol 22:87–106

    Article  Google Scholar 

  • Collins DA, Della-Marta PM, Plumier N, Trewin BC (2000) Trends in annual frequencies of extreme temperature events in Australia. Aust Meteorol Mag 49:277–292

    Google Scholar 

  • Cox SJ, Wang W-C, Schwartz SE (1995) Climate response to forcing by sulfate aerosols and green house gases. Geophys Res Lett 18:2509–2512

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 13:553–597

    Article  Google Scholar 

  • Dickinson RE (1982) In: Carbon dioxide review. Clark WC (ed). Clarendo, New York, N. Y. USA. 101–103

  • Doherty RM, Hulme M, Jones CG (1999) A gridded reconstruction of land and ocean precipitation for extended tropics from 1974–1994. Int J Climatol 19:119–142

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Meams LO (2000) Climate extremes: observations, modeling and impacts. Science 289:2068–2070

    Article  Google Scholar 

  • Folland CK, Miller C, Bader D, Crowe M, Jones P, Plummer N, Parker DE, Rogers J, Scholfield P (1999) Temperature indices for climate extremes. Clim Change 42:31–43

    Article  Google Scholar 

  • Folland CK, Rayner N, Frich P, Basnett T, Parker D, Holton B (2000) Uncertainties in climate data sets—a challenge for WMO. WMO Bull 49:59–68

    Google Scholar 

  • de Forster PMF, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res 102:10841–10857

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein-Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the 20th century. Clim Res 19:193–202

    Article  Google Scholar 

  • Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311

    Article  Google Scholar 

  • Gruza G, Rankova E, Razuvaev V, Bulygina O (1999) Indicators of climate change for the Russian Federation. Clim Change 42:219–242

    Article  Google Scholar 

  • Hansen J (2005) A slippery slope: how much global warming constitutes “dangerous anthropogenic interference”? Clim Change 68:269–279

    Article  Google Scholar 

  • Hansen J, Lebedeff S (1988) Global surface temperatures: update through 1987. Geophys Res Lett 15:323–326

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen J, Takahashi T (eds) Climate processes and climate sensitivity. Geophysi. Monogr. Ser., New York, 29. Amer Geophysical Union, Washington D.C., pp 130–163

    Chapter  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Hasumi H, Emori S (2004) K-1 (MIROC) model development, K-1 Tech. Rep. 1, Frontier Research Center for Global Change, Japan, 39 pp

  • Haywood J, Wetherald R, Manabe S, Ramaswamy V (1997) Transient response of a coupled model to estimated changes in greenhouse gas response and sulfate concentration. Geophys Res Lett 24:1335–1338

    Article  Google Scholar 

  • Hewitt CD, Mitchell JFB (1997) Radiative forcing and response of a GCM to ice age boundary conditions: cloud feedback and climate sensitivity. Clim Dyn 13:821–834

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Vander Linden PJ, Xiaso D (2001) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge, 944 pp

    Google Scholar 

  • Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382

    Article  Google Scholar 

  • Huntingford C, Stott P, Allen M, Lambert H (2006) Incorporating model uncertainly into attribution of observed temperature change. Geophys Res Lett 33:L5710

    Article  Google Scholar 

  • IPCC (1990) Climate change, the Intergovernmental Panel on Climate Change Scientific Assessment (Houghton, J. T., B.A. Callander, and S.K. Varney eds). Cambridge University Press

  • IPCC (1996) Climate change: the science of climate change. contributions of working group I to the second assessment report of the intergovernmental panel on climate change In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds.). Cambridge University Press, Cambridge, 572 pp

  • IPCC (2001) Climate change: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T., Y. Ding., D J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson eds.). Cambridge University Press, Cambridge, 881 pp

  • Jones PD (1999) Classics in physical geography revisited—Manley's CET series. Prog Phys Geogr 23:425–428

    Article  Google Scholar 

  • Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377

    Article  Google Scholar 

  • Jones EP, Aagaard K, Camack EC, MacDonalds RW, McLaughlin FA, Perkin RG, Swift JH (1996) Recent changes in Artic Ocean thermohaline structure: results from the Canada/USA 1994 Arctic Ocean section. Mem Natl Inst Polar Res Spec Issue 51:307–315

    Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature time series. J Geophys Res 106:3371–3380

    Article  Google Scholar 

  • Jury MR (2011a) Long term variability and trends in the Caribbean Sea. Intl J Oceanogr. doi:10.1155/2011/465810

  • Jury MR (2011b) Representation of the Caribbean mean diurnal cycle in observation, reanalysis, and CMIP3 model datasets. Theor Appl Climatol 107:313–324

    Article  Google Scholar 

  • Jury MR, Chiao S (2011) Meso-circulation associated with summer convection over the central Antilles. Earth Interact 15:1–19

    Article  Google Scholar 

  • Jury MR, Whitehall K (2009) Warming of an elevated layer over Africa. Clim Chang. doi:10.1007/s10584-009-9657-4

  • Jury MR, Winter A (2009) Warming of an elevated layer over the Caribbean. Clim Chang. doi:10.1007/s10584-009-9658-3

  • Karl TR, Knight RW (1998) Secular trends of precipitations amount, frequency, and intensity in the USA. Bul Amer Met Soc 79:231–241

    Article  Google Scholar 

  • Karl TR, Kukla G, Razuvayev VN, Changery MJ, Quayle RG, Heim RR, Easterling DR, Fu CB (1991) Global warming: evidence for asymmetric diurnal temperature change. Geophys Research Letters 18:2253

    Article  Google Scholar 

  • Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindesay J, Peterson TC (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperatures. Bull Amer Meterol Soc 14:1007–1023

    Article  Google Scholar 

  • Katz RW (1999) Extreme value theory for precipitation: sensitivity analysis for climate change. Adv Water Resour 23:133–139

    Article  Google Scholar 

  • Kondratyev KY (1999) Climate effects of aerosols and clouds. Springer, Berlin, p 264

    Google Scholar 

  • Kunkel KE, Changnon SA, Reinke BC, Arritt RW (1996) The July 1995 heat wave in the Midwest: a climate perspective and critical weather factors. Bull Am Met Soc 77:1507–1518

    Article  Google Scholar 

  • Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2527

    Article  Google Scholar 

  • Lacis AA, Webbles DJ, Logan JA (1990) Radiative forcing by changes in the vertical distribution of ozone. J Geophys Res 95:9971–9981

    Article  Google Scholar 

  • Le Treut H, Forichon M, Boucher O, Li Z-X (1998) Sulfate aerosol, indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks. J Clim 11:1673–1684

    Article  Google Scholar 

  • Manabe S, Broccoli AJ (1985) The influence of continental ice sheets on the climate of an ice age. J Geophys Res 90:2167–2190

    Article  Google Scholar 

  • Martis A, van Oldenborgh GJ, Burgers G (2002) Predicting rainfall in the Dutch Caribbean—more than El Niño. Int J Climatol 22:1219–1234

    Article  Google Scholar 

  • Meehl GA, Karl T, Easterling DR, Changnon S, Pielke RJ, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root R, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations. Socioeconomic impacts and model projections. Bull Am Meteorol Soc 81:2983–2985

    Article  Google Scholar 

  • Mesinger F et al (2006) North American regional reanalysis. Bull Amer Meteorol Soc 87:343–360

    Article  Google Scholar 

  • Michaels PJ, Balling RC Jr, Vose RS, Knappenberger PC (1998) Analysis of trends on the variability of daily and monthly historical temperature measurements. Clim Res 10:27–33

    Article  Google Scholar 

  • Montealegre BJE, Pabón DJ (2002) Follow-up, diagnostic and climatic forecast in Colombia. Institute of Hydrology, Meteorolology and Environmental Studies (IDAM), 2–10

  • Neelin JD, Mnnich M, Su H, Meyerson, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103(16):6110–6115

    Article  Google Scholar 

  • Nicholls N, Murray W (1999) Indices and Indicators for climate extremes, Ashville, NC, USA. Breakout group B: precipitation. Clim Change 42:23–29

    Article  Google Scholar 

  • Parker DE (1994) Effects of changing exposures of thermometers at land stations. Int J Climatol 14:102–113

    Article  Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature data base. Bull Amer Met Soc 78:2837–2849

    Article  Google Scholar 

  • Peterson TCRS, Vose RS, Razuvav V (1998) GHCN quality control of monthly temperature data. Int J Climatol 18:1169–1179

    Article  Google Scholar 

  • Peterson TC, Gallo KP, Livermore J, Owen TW, Huang A, McKittrick DA (1999) Global rural temperature trends. Geophys Res Lett 26:329–332

    Article  Google Scholar 

  • Peterson TC, Taylor MA, Demeritte R, Duncombe DL, Burton S, Thomson F, Porter A, Mercedes M, Villegas E, Fils SR, Tank KA, Martis A, Warner R, Joyette A, Mills W, Alexander L, Byron G (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107:4601. doi:10.1029/2002/JD002251

    Article  Google Scholar 

  • Ramanathan V (1981) The role of ocean–atmosphere interactions in the CO2-climate problem. J Atmos Sci 38:918–930

    Article  Google Scholar 

  • Ramanathan V, Cicerone R, Singh H, Kiehl J (1985) Trace gas trend and their potential role in climate change. J Geophys Res 90:5547–5566

    Article  Google Scholar 

  • Ramaswamy V, Chen C-T (1997) Linear additivity of climate response for combined albedo and greenhouse perturbations. Geophys Res Lett 24:567–570

    Article  Google Scholar 

  • Rausher S, Giorgi F, Noah D, Anji S (2008) Extension and intensification of the meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571

    Article  Google Scholar 

  • Rind D, Pettit D, Kukla G (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a GCM? J Geophys Res 94:12851–12871

    Article  Google Scholar 

  • Roeckner E, Siebert T, Feichter J (1994) Climate response to anthropogenic sulfate with a general circulation model. In: Charson R, Heintzenberg J (eds) Aerosol forcing of climate. John Wiley & Sons, Chichester, pp 349–362

    Google Scholar 

  • Rudloff W (1981) World-climates, with tables of climatic data and practical suggetions. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart

    Google Scholar 

  • Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations, Proc Intl Precip Working Group, Monterey, Eumetsat contribution. 517–524

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteor Soc 91:1015–1057

    Article  Google Scholar 

  • Salinger MJ (2005) Climate variability and change: past, present and future—an overview. Clim Change 70:9–20

    Article  Google Scholar 

  • Shar C, Vidale P, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–335

    Article  Google Scholar 

  • Singh B (1997) Climate changes in the greater and southern Caribbean. Intl J Climatol 17:1093–1114

    Article  Google Scholar 

  • Taylor KE, Penner JE (1994) Response of the climate system to atmospheric aerosols and greenhouse gases. Nature 369:734–737

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Met Soc 93:485–498

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79:61–78

    Article  Google Scholar 

  • Trenberth KE, Owen TW (1999) Indices and indicators for climate extremes, Asheville, NC, 3–6 June 1999

  • Vinnikov K, Groisman PY, Lugina KM (1990) Empirical data on contemporary global climate changes (temperature and precipitation). J Clim 3:662–677

    Article  Google Scholar 

  • Wang W-C, Dudek M, Liang X-Z, Kiehl J (1991) Inadequacy of effective CO2 as a proxy in simulating the greenhouse effect of other radiatively active gases. Nature 350:573–577

    Article  Google Scholar 

  • Wang C, Lee S-K, Enfield DB (2008) Atlantic warm pool as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi:10.1029/2007GC001809

    Google Scholar 

  • Wetherald R, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415

    Article  Google Scholar 

  • WMO (1986) Atmospheric ozone: global ozone research and monitoring project, World Meteorological Organization, report 16, chapter 15, Geneva, Switzerland

  • WMO (1992) Scientific assessment of ozone depletion: World Meteorological Organization, report 25. Switzerland, Geneva

    Google Scholar 

  • WMO (2003) Our future climate. Bulletin 52, 238–243. World Meteorological Organization, (WMO) Geneva, Switzerland

    Google Scholar 

  • Yukimoto S, Noda A, Uchiyama T, Kusunoki S, Kitoh A (2006) Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Pap Metor Geophys 56:9–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Jury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, C.R., Jury, M.R. Spatial and temporal analysis of climate change in Hispañola. Theor Appl Climatol 113, 213–224 (2013). https://doi.org/10.1007/s00704-012-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0781-0

Keywords

Navigation