Skip to main content
Log in

Geostatistical improvements of evapotranspiration spatial information using satellite land surface and weather stations data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The objective of the present study was to use the simple cokriging methodology to characterize the spatial variability of Penman–Monteith reference evapotranspiration and Thornthwaite potential evapotranspiration methods based on Moderate Resolution Imaging Spetroradiometer (MODIS) global evapotranspiration products and high-resolution surfaces of WordClim temperature and precipitation data. The climatic element data referred to 39 National Institute of Meteorology climatic stations located in Minas Gerais state, Brazil and surrounding states. The use of geostatistics and simple cokriging technique enabled the characterization of the spatial variability of the evapotranspiration providing uncertainty information on the spatial prediction pattern. Evapotranspiration and precipitation surfaces were implemented for the climatic classification in Minas Gerais. Multivariate geostatistical determined improvements of evapotranspiration spatial information. The regions in the south of Minas Gerais derived from the moisture index estimated with the MODIS evapotranspiration (2000–2010), presented divergence of humid conditions when compared to the moisture index derived from the simple kriged and cokriged evapotranspiration (1961–1990), indicating climate change in this region. There was stronger pattern of crossed covariance between evapotranspiration and precipitation rather than temperature, indicating that trends in precipitation could be one of the main external drivers of the evapotranspiration in Minas Gerais state, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Ashraf M, Loftis JC, Hubbard KG (1997) Application of geostatistics to evaluate partial weather station networks. Agr Forest Meteorol 84:255–271

    Article  Google Scholar 

  • Atkinson PM, Curran PJ (1995) Defining an optimal size of support for remote sensing investigations. IEEE Trans Geosci Remote Sens 33:768–776

    Article  Google Scholar 

  • Atkinson PM, Lewis P (2000) Geostatistical classification for remote sensing: an introduction. Comput Geosci 26:361–371

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  Google Scholar 

  • Brasil (1992) Normais climatológicas (1961–1990). Ministério da Agricultura e Reforma Agrária. Secretaria Nacional de Irrigação, Brasília

    Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford

    Google Scholar 

  • Carvalho LG, Alves MC, Oliveira MS, Vianello RL, Sediyama GC, Carvalho LMT (2010) Multivariate geostatistical application for climate characterization of Minas Gerais State, Brazil. Theor Appl Climatol 102:417–428

    Article  Google Scholar 

  • Chappell A (1998) Using remote sensing and geostatistics to map 137Cs-derived net soil flux in south-west Niger. J Arid Environ 39:441–455

    Article  Google Scholar 

  • Chilès JP, Delfiner P (2008) Geostatistics: modeling spatial uncertainty. Wiley, Hoboken

    Google Scholar 

  • Cressie NAC (1985) Fitting variogram models by weighted least squares. Math Geol 17:563–586

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, Hoboken

    Google Scholar 

  • Curran PJ (1988) The semivariogram in remote sensing: an introduction. Remote Sens Environ 24:493–507

    Article  Google Scholar 

  • Diggle PJ, Ribeiro PJ Jr (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR (2007) On the importance of including vegetation dynamics in Budyko's hydrological model. Hydrol Earth Syst Sci 11:983–995

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hidrol 228:113–129

    Article  Google Scholar 

  • Hansen JW (2002) Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric Syst 74:309–330

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Irmak S, Payero JO, Martin DL, Irmak A, Howell T (2006) Sensitivity analyses and sensitivity coefficients of standardized daily ASCE–Penman–Monteith equation. J Irrig Drain Eng ASCE 132:564–578

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–953

    Article  Google Scholar 

  • Lemos Filho LCA, Carvalho LG, Evangelista AWP, Carvalho LMT, Dantas AAA (2007) Spatial-time analysis of evapotranspiration reference in the Minas Gerais State, Brazil. Ciênc Agrotec 31:1462–1469

    Article  Google Scholar 

  • Lemos Filho LCA, Carvalho LG, Evangelista AWP, Alves Júnior J (2010) Spatial analysis of the influence of meteorological elements on the reference evapotranspiration in the State of Minas Gerais, Brazil. Rev Bras Eng Agríc Ambient 14:1294–1303

    Article  Google Scholar 

  • Lioubimtseva E, Colea R, Adamsb JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308

    Article  Google Scholar 

  • Maillard P (2003) Comparing texture analysis methods through classification. Photogramm Eng Remote Sens 69:357–367

    Google Scholar 

  • Martínez-Cob A, Cuenca RH (1992) Influence of elevation on regional evapotranspiration using multivariate geostatistics for various climatic regimes in Oregon. J Hydrol 136:353–380

    Article  Google Scholar 

  • Mather JR, Yoshioka GA (1968) The role of climate in the distribution of vegetation. Ann Assoc Am Geogr 58:29–41

    Article  Google Scholar 

  • Mitchell N, Espie P, Hankin R (2004) Rational landscape decision-making: the use of meso-scale climatic analysis to promote sustainable land management. Landsc Urban Plan 67:131–140

    Article  Google Scholar 

  • Mu Q, Zhao M, Heinsch FA, Liu M, Tian H, Running SW (2007a) Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J Geophys Res 112:1–13

    Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007b) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536

    Article  Google Scholar 

  • Mu Q, Jones LA, Kimball JS, McDonald KC, Running SW (2009) Satellite assessment of land surface evapotranspiration for the pan-Arctic domain. Water Resour Res 45:1–20

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Pereira AR, Villa Nova NA, Sediyama GC (1997) Evapo(transpi)ração. FEALQ, Piracicaba

    Google Scholar 

  • Rivington M, Matthews KB, Bellocchi G, Buchan K, Stöckle CO, Donatelli M (2007) An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environ Model Softw 22:202–210

    Article  Google Scholar 

  • Root TL, Schneider SH (1995) Ecology and climate: research strategies and implications. Science 269:334–341

    Article  Google Scholar 

  • Sá Júnior A, Carvalho LG, Silva FF, Alves MC (2011) Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theor Appl Climatol 108:1–7

    Article  Google Scholar 

  • Skirvin SM, Marsh SE, McClaran MP, Meko DM (2003) Climate spatial variability and data resolution in a semi-arid watershed, south-eastern Arizona. J Arid Environ 54:667–686

    Article  Google Scholar 

  • Smith M (1991) Report on the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Smith M, Allen R, Monteith JL, Perrier A, Pereira LS, Segeren A (1990) Expert consultation on revision of FAO methodologies for crop water requirements. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Teuling AJ, Hirschi M, Ohmura A, Wild M, Reichstein M, Ciais P, Buchmann N, Ammann C, Montagnani L, Richardson AD, Wohlfahrt G, Seneviratne SI (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36:1–5

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Drexel Institute of Technology, Laboratory of Climatology, Centerton (publications in Climatology, vol. VIII)

  • Vianello RL, Alves AR (1991) Meteorologia básica e aplicações. Editora UFV, Viçosa

    Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics. Springer, New York

    Book  Google Scholar 

  • Willmott CJ, Feddema JJ (1992) A more rational climatic moisture index. Prof Geogr 44:84–88

    Article  Google Scholar 

  • Woodcock CE, Strahler AH, Jupp DLB (1988a) The use of variograms in remote sensing: I. Scene models and simulated images. Remote Sens Environ 25:323–348

    Article  Google Scholar 

  • Woodcock CE, Strahler AH, Jupp DLB (1988b) The use of variograms in remote sensing: II. Real images. Remote Sens Environ 25:349–379

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks Maosheng Zhao and Qiaozhen Mu for the MODIS dataset and José Roberto Soares Scolforo and Secretary of State for the Environment and Sustainable Development of Minas Gerais for the accomplishment of the ecological and economical zoning of Minas Gerais through which it was possible to generate the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Carvalho Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho Alves, M., de Carvalho, L.G., Vianello, R.L. et al. Geostatistical improvements of evapotranspiration spatial information using satellite land surface and weather stations data. Theor Appl Climatol 113, 155–174 (2013). https://doi.org/10.1007/s00704-012-0772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0772-1

Keywords

Navigation