Skip to main content

Advertisement

Log in

Multivariate geostatistical application for climate characterization of Minas Gerais State, Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The objective of the present study was to assess for Minas Gerais the cokriging methodology, in order to characterize the spatial variability of Thornthwaite annual moisture index, annual rainfall, and average annual air temperature, based on geographical coordinates, altitude, latitude, and longitude. The climatic element data referred to 39 INMET climatic stations located in the state of Minas Gerais and in nearby areas and the covariables altitude, latitude, and longitude to the SRTM digital elevation model. Spatial dependence of data was observed through spherical cross semivariograms and cross covariance models. Box–Cox and log transformation were applied to the positive variables. In these situations, kriged predictions were back-transformed and returned to the same scale as the original data. Trend was removed using global polynomial interpolation. Universal simple cokriging best characterized the climate variables without tendentiousness and with high accuracy and precision when compared to simple cokriging. Considering the satisfactory implementation of universal simple cokriging for the monitoring of climatic elements, this methodology presents enormous potential for the characterization of climate change impact in Minas Gerais state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. In: Food and Agriculture Organization of the United Nations—FAO, Irrigation and Drainage Paper, vol. 56

  • Ashraf M, Loftis JC, Hubbard KG (1997) Application of geostatistics to evaluate partial weather station networks. Agric For Meteorol 84:255–271

    Article  Google Scholar 

  • BRASIL (1992) Ministério da Agricultura e Reforma Agrária. Secretaria Nacional de Irrigação. Departamento Nacional de Meteorologia. Normais climatológicas (1961–1990), Brasília

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Calder I, Garratt J, James P, Nash E (2008) Models, myths and maps: development of the exploratory climate land assessment and impact management (EXCLAIM) tool. Environ Model Softw 23:650–659

    Google Scholar 

  • Carvalho LMT, Louzada NL (2007) Zoneamento ecológico-econômico do estado de Minas Gerais: abordagem metodológica para caracterização do componente flora. In: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, INPE, 3789–3796.

  • Chappell A (1998) Using remote sensing and geostatistics to map 137Cs-derived net soil flux in south-west Niger. J Arid Environ 39:441–455

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley series in probability and statistics. Wiley-Interscience, New York

    Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. Rome, FAO, Irrigation and Drainage Paper, 24

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Hansen JW (2002) Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric Syst 74:309–330

    Article  Google Scholar 

  • ICRISAT (1980) International crops research institute for the semi-arid tropics. Climatic classification: a consultants’ meeting, Icrisat Center, Patancheru, A.P.502324, India

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Lioubimtseva E, Colea R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308

    Article  Google Scholar 

  • Martínez-Cob A, Cuenca RH (1992) Influence of elevation on regional evapotranspiration using multivariate geostatistics for various climatic regimes in Oregon. J Hydrol 136:353–380

    Article  Google Scholar 

  • Mather JR (1974) Climatology: fundamentals and applications. McGraw-Hill, New York

    Google Scholar 

  • Mitchell N, Espie P, Hankin R (2004) Rational landscape decision-making: the use of meso-scale climatic analysis to promote sustainable land management. Landsc Urban Plan 67:131–140

    Article  Google Scholar 

  • NASA JPL (2008) Shuttle radar topography mission: the mission to map the world. Jet Propulsion Laboratory, California Institute of Technology Reports available in the website http://www2.jpl.nasa.gov/srtm/index.html

  • Rivington M, Matthews KB, Bellocchi G, Buchan K, Stöckle CO, Donatelli M (2007) An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environ Model Softw 22:202–210

    Article  Google Scholar 

  • Salinger MJ (2005) Climate variability and change: past, present and future—an overview. Clim Change 70:9–29

    Article  Google Scholar 

  • Sediyama G, Mello JC Jr (1998) Modelos para estimativas das temperaturas normais mensais médias, máximas, mínimas e anual no estado de Minas Gerais. Revista Engenharia na Agricultura 6:57–61

    Google Scholar 

  • Skirvin SM, Marsh SE, McClaran MP, Meko DM (2003) Climate spatial variability and data resolution in a semi-arid watershed, south-eastern Arizona. J Arid Environ 54(4):667–686

    Article  Google Scholar 

  • Smith M (1991) Report on the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. Rome

  • Smith M, Allen R, Monteith JL, Perrier A, Pereira LS, Segeren A (1990) Expert consultation on revision of FAO methodologies for crop water requirements. Rome

  • Soares A (2000) Geoestatística para as ciências da terra e do ambiente. IST Press, Lisbon

    Google Scholar 

  • Swart R, Robinson J, Cohen S (2003) Climate change and sustainable development: expanding the options. Clim Pol 3:19–40

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Centerton, NJ: Drexel Institute of Technology, Laboratory of Climatology. Publications in Climatology, vol. VIII

  • Vianello RL, Alves AR (1991) Meteorologia básica e aplicações. Imprensa Universitária/UFV, Viçosa

    Google Scholar 

  • Vieira SR, Millete J, Topp GC, Reynolds WD (2002) Handbook for geostatistical analysis of variability in soil and climate data. In: Topics in soil science, vol. 2, pp 2–45

  • Wackernagel H (2003) Multivariate geostatistics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Carvalho Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, L.G., de Carvalho Alves, M., de Oliveira, M.S. et al. Multivariate geostatistical application for climate characterization of Minas Gerais State, Brazil. Theor Appl Climatol 102, 417–428 (2010). https://doi.org/10.1007/s00704-010-0273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0273-z

Keywords

Navigation