Skip to main content

Advertisement

Log in

Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazonia

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This study evaluates the simulations of the Noah-MP surface processes over a crop and a forest sites in Amazonia using tower observations. Soil moisture simulations agree with the observations in both land covers, mainly during the rainy season. However, simulations show cold biases in the soil temperature at both sites. The magnitude and seasonal cycle of the surface energy fluxes are better simulated at the crop site, although the model significantly underestimates the sensible heat flux at this site. The model reproduces the seasonal pattern of surface runoff at both sites. The Noah-MP model does not adequately simulate the base flow at the crop site, while the simulated total runoff at the forest site is closer to the observation than at the crop site. The results show that, in general, the Noah-MP model simulations for the two sites in Amazonia exhibit fairly realistic performance, particularly over the crop site. However, there are cold biases in soil temperature simulations, which could be related with the parameterization of the equilibrium relationship between soil moisture and soil temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acevedo OC, Moraes OLL, da Silva R, Fitzjarrald DR, Sakai RK, Staebler RM, Czikowsky MJ (2004) Inferring nocturnal surface fluxes from vertical profiles of scalars in an Amazon pasture. Global Change Biol 10:886–894

    Article  Google Scholar 

  • Alvalá RCS, Gielow R., da Rocha HR, Freitas HC, Lopes JM, Manzi AO, von Randow C, Dias MAFS, Cabral OMR, Waterloo MJ (2002) Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondônia. Journal of Geophysical Research 107,D20:10-1-10-20

  • Baker IT, Harper AB, da Rocha HR, Denning AS, Araújo AC, Borma LS, Freitas HC, Goulden ML, Manzi AO, Miller SD, Nobre AD, Restrepo-Coupe N, Saleska SR, Stöckli R, von Randow C, Wofsy SC (2013) Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America. Agric For Meteorol 182–183:177–188

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Process Photosynthesis Res 1:221–234

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon uptake: global distribution and covariation with climate. Science 329:834–838

    Article  Google Scholar 

  • Beljaars ACM, Viterbo P, Miller MJ, Betts AK (1996) The anomalous rainfall over the United States during July 1993: sensitivity to land surface parameterization and soil moisture anomalies. Mon Weather Rev 124:362–383

    Article  Google Scholar 

  • Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Menard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The Joint UK Land Environment Simulator (JULES), Model description—Part 1: energy and water fluxes. Geosci Model Dev 4:595–640

    Article  Google Scholar 

  • Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo P (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res 101:7209–7225

    Article  Google Scholar 

  • Blyth E, Clark DB, Ellis R, Huntingford C, Los S, Pryor M, Best M, Sitch S (2011) A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale. Geosci Model Dev 4:255–269

    Article  Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN ‐417 + STR, 150 pp., Natl. Cent. for Atmos. Res., Boulder, Colo

  • Bruno RD, da Rocha HR, de Freitas HC, Goulden ML, Miller SD (2006) Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol Processes 20:2477–2489

    Article  Google Scholar 

  • Brutsaert WA (1982) Evaporation into the Atmosphere. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Chen F, Janjic Z, Mitchell KE (1997) Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary Layer Meteorol 85:391–421. doi:10.1023/A:1000531001463

    Article  Google Scholar 

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Cox PM (2011) The Joint UK Land Environment Simulator (JULES), Model description—part2: carbon fluxes and vegetation. Geosci Model Dev 4:641–688

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Article  Google Scholar 

  • Collatz GJ, Ribascarbo M, Berry JA (1992) A coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538. doi:10.1071/PP9920519

    Article  Google Scholar 

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34

    Article  Google Scholar 

  • Costa MH, Souza-Filho JDC, Ribeiro A (2004) Comments on the regional evapotranspiration of the Amazon. J Hydrometeorol 5:1279–1280

    Article  Google Scholar 

  • da Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LDVO, de Frietas HC, Figueira AMES (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:S22–S32

    Article  Google Scholar 

  • de Gonçalves LGG, Restrepo-Coupe N, da Rocha HR, Saleska SR, Stöckli R (2011) LBA-ECO CD-32 LBA Model Intercomparison Project (LBA-MIP) Forcing Data. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA

  • Dickinson RE, Shaikh M, Bryant R, Graumlich L (1998) Interactive canopies for a climate model. J Clim 11:2823–2836

    Article  Google Scholar 

  • Dirmeyer PA, Koster RD, Guo Z (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeorol 7:1177–1198

    Article  Google Scholar 

  • Doyle ME, Tomasella J, Rodriguez DA, Chou SC (2013) Experiments using new initial soil moisture conditions and soil map in the Eta model over La Plata Basin. Meteorol Atmos Phys 121:119–136

    Article  Google Scholar 

  • Falesi IC, dos Santos WHP, Vieira LS (1964) Os solos da colônia agrícola de Tomé-Açu. IPEAN Boletim técnico. 44:93

    Google Scholar 

  • Findell KL, Shevliakova E, Milly PCD, Stouffer RJ (2007) Modeled Impact of Anthropogenic Land Cover Change on Climate. J Clim 20:3621–3634

    Article  Google Scholar 

  • Gatti LV, Gloor M, Miller JB, Doughty CE, Malhi Y, Domingues LG, Basso LS, Martinewski A, Correia CSC, Borges VF, Freitas S, Braz R, Anderson LO, Rocha H, Grace J, Phillips OL, Lloyd J (2014) Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506:76–80

    Article  Google Scholar 

  • Germer S, Neill C, Krusche AV, Elsenbeer H (2010) Influence of land-use change on near-surface hydrological processes: undisturbed forest to pasture. J Hydrol 380:473–480

    Article  Google Scholar 

  • Goulden ML, Miller SD, da Rocha HR, Menton MC, de Freitas HC, Figueira AMES, de Sousa CAD (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14:S42–S54

    Article  Google Scholar 

  • Houghton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in Brazilian Amazon: a comparison of estimates. Global Change Biol 7:731–746

    Article  Google Scholar 

  • INMET—INSTITUTO NACIONAL DE METEOROLOGIA (1992) Normais Climatológicas (1961–1990). Brasília, INMET—Instituto Nacional de Meteorologia/Ministério da Agricultura e Reforma Agrária

  • Keller M, Varner R, Dias J, Silva H (2005) Soil-atmosphere exchange of nitrous oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajós National Forest, Brazil. Earth Interact 9:1–28

    Article  Google Scholar 

  • Mahrt L, Pan H-L (1984) A two-layer model of soil hydrology. Boundary Layer Meteorol 29:1–20

    Article  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  Google Scholar 

  • Melillo JM, Houghton RA, Kicklighter DW, McGuire AD (1996) Tropical deforestation and the global carbon budget. Annu Rev Energy Env 21:293–310

    Article  Google Scholar 

  • Miller SD, Goulden ML, Menton MC, da Rocha HR, de Freitas HC, Figueira AMES, de Sousa CAD (2004) Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol Appl 14:S114–S126

    Article  Google Scholar 

  • Miller SD, Goulden ML, da Rocha HR (2007) The effect of canopy gaps on subcanopy ventilation and scalar fluxes in a tropical forest. Agric For Meteorol 142:25–34

    Article  Google Scholar 

  • Miller SD, Goulden ML, Hutyra LR, Keller M, Saleska SR, Wofsy SC, Figueira AMS, da Rocha HR, de Camargo PB (2011) Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc Natl Acad Sci USA 108:19431–19435

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L (2004) The effects of canopy processes on snow surface energy and mass balances. J Geophys Res 109:D23111. doi:10.1029/2004JD004884

    Google Scholar 

  • Niu G-Y, Yang Z-L (2006) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7:937–952

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L, Dickinson RE, Gulden LE (2005) A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J Geophys Res 110:D21106. doi:10.1029/2005JD006111

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112:D07103. doi:10.1029/2006JD007522

    Google Scholar 

  • Niu G-Y, Yang Z-L, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah - MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:D12109. doi:10.1029/2010JD015139

    Article  Google Scholar 

  • Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4:957–988

    Article  Google Scholar 

  • Nobre P, Malagutti M, Urbano DF, Almeida RAF, Giarolla E (2009) Amazon deforestation and climate change in a coupled model simulation. J Clim 22:5686–5697

    Article  Google Scholar 

  • Oglesby RJ, Erickson DJ III (1989) Soil moisture and the persistence of North American drought. J Clim 2:1362–1380

    Article  Google Scholar 

  • Oleson KW et al (2004) Technical description of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN‐461 + STR, 174 pp, Natl Cent for Atmos Res, Boulder, Colo. http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/index.html. Accessed 17 April 2012

  • Pan H-L, Mahrt L (1987) Interaction between soil hydrology and boundary-layer development. Boundary Layer Meteorol 38:185–202

    Article  Google Scholar 

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23:479–510. doi:10.1002/joc.893

    Article  Google Scholar 

  • Sakai RK, Fitzjarrald DR, Moraes OLL, Staebler RM, Acevedo OC, Czikowsky MJ, da Silva R, Brait E, Miranda V (2004) Land-use change effects on local energy, water and carbon balances in an Amazonian agricultural field. Global Change Biol 10:895–907

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill PM, Daube BC, Freitas C, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  Google Scholar 

  • Sampaio G, Nobre CA, Costa MH, Satyamurty P, Filho BSS, Cardoso MF (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:1–7

    Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB 2) for atmospheric GCMs: part I.Model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Shuttleworth WJ (2012) Terrestrial hydrometeorology. Wiley, Chichester

    Book  Google Scholar 

  • Stöckli R, Lawrence DM, Niu G-Y, Oleson KW, Thornton PE, Yang Z-L, Bonan GB, Denning AS, Running SW (2008) Use of FLUXNET in the Community Land Model development. J Geophys Res 113:G01025. doi:10.1029/2007JG000562

    Google Scholar 

  • von Randow C, Manzi AO, Kruijt B, Oliveira PJC, Zanchi FB, Silva RL, Hodnett MG, Gash JHC, Elbers JA, Waterloo MJ, Cardoso FL, Kabat P (2004) Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor Appl Climatol 78:5–26

    Google Scholar 

  • von Randow C et al (2013) Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agric For Meteorol 182–183:145–155

    Article  Google Scholar 

  • Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364

    Article  Google Scholar 

  • Yang R, Friedl MA (2003) Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. J Geophys Res 108:D16. doi:10.1029/2002JD003109

    Google Scholar 

  • Yang Z-L, Niu G-Y (2003) The versatile integrator of surface and atmosphere processes (VISA) part I: model description. Global Planet Change 38:175–189. doi:10.1016/S0921-8181(03)00028-6

    Article  Google Scholar 

  • Yang Z-L, Niu G-Y, Mitchell KE, Chen F, Ek MB, Barlage M, Longuevergne L, Manning K, Niyogi D, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah -MP): 2. Evaluation over global river basins. J Geophys Res 116:D12110

    Article  Google Scholar 

  • Zhang H, Henderson-Sellers A, McGuffie K (2001) The compounding effects of tropical deforestation and greenhouse warming on climate. Clim Change 49:309–338

    Article  Google Scholar 

Download references

Acknowledgments

The first author thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the grant received for the development of this study, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the LBA project for the data. We thank Marta Llopart and Emilia Brasilio for providing data from the forest site and Michael Ek (NCEP/EMC) and Fei Chen (NCAR/RAL) for making available the Noah-MP model. The authors would like to thank the reviewers’s suggestions that helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel L. Pilotto.

Additional information

Responsible Editor: S. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilotto, I.L., Rodríguez, D.A., Tomasella, J. et al. Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazonia. Meteorol Atmos Phys 127, 711–723 (2015). https://doi.org/10.1007/s00703-015-0399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-015-0399-8

Keywords

Navigation