Skip to main content
Log in

Interaction between soil hydrology and boundary-layer development

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A two-layer model of soil hydrology and thermodynamics is combined with a one-dimensional model of the planetary boundary layer to study various interactions between evolution of the boundary layer and soil moisture transport. Boundary-layer moistening through surface evaporation reduces the potential and actual surface evaporation as well as the boundary-layer growth. With more advanced stages of soil drying, the restricted surface evaporation allows greater sensible heat flux which enhances boundary-layer growth and entrainment drying.

Special individual cases are studied where the wind speed is strong, solar radiation is reduced, transpiration is important, the soil is thin, or the soil is covered with organic debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Nakshabandi, G. and Kohnke, H.: 1965, ‘Thermal Conductivity and Diffusivity of Soils as Related to Moisture Tension and Other Physical Properties’, Agric. Meteorol. 2, 271–279.

    Google Scholar 

  • Brenner, S., Yang, C.-H., and Mitchell, K.: 1984, The AFGL Global Spectral Modet: Expanded Resolution Baseline Version, Report No. AFGL-TR-84–0308, 72pp. [Air Force Geophysics Laboratory/LYP, Hascom AFB, MA 01731, U.S.A.].

    Google Scholar 

  • Clapp, R. B. and Hornberger, G. M.: 1978, ‘Empirical Equations for Some Soil Hydraulic Properties’, Water Resources Res. 14, 601–604.

    Google Scholar 

  • Deardorff, J.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation’, J. Geophys. Res. 83, 1889–1903.

    Google Scholar 

  • DeBruin, H. A. R.: 1983, ‘A Model for the Priestly-Taylor Parameter α’, J. Cli. Appl. Meteorol. 22, 572–578.

    Google Scholar 

  • DeVries, D. A.: 1975, ‘Heat Transfer in Soils’, in D. A. DeVries and N. H. Afgan (eds.), Heat and Mass Transfer in the Biosphere, Scripta Book Co., Washington, D.C., pp. 5–28.

    Google Scholar 

  • Holtslag, A. A. M. and Van Ulden, A. P.: 1983, ‘A Simple Scheme for Daytime Estimates of Surface Fluxes from Routine Weather Data’, J. Cli. Appl. Meteorol. 22, 517–529.

    Google Scholar 

  • Hunt, B. G.: ‘A Model Study of Some Aspects of Soil Hydrology Relevant to Climatic Modelling’, Quart. J. R. Meteorol. Soc. 111, 1071–1085.

  • Leyton, L., Reynolds, E. R. C., and Thompson, F. B.: 1967, ‘Rainfall Interception in Forest and Moorland’, in W. E. Sopper and H. W. Lull (eds.), Forest Hydrology, Pergamon, Oxford, pp. 163–178.

    Google Scholar 

  • Mahrt, L.: 1976, ‘Mixed Layer Moisture Structure’, Mon. Wea. Rev. 104, 1403–1407.

    Google Scholar 

  • Mahrt, L. and Ek, M.: 1984, ‘The Influence of Atmospheric Stability on Potential Evaporation’, J. Cli. Appl. Meteorol. 23, 222–234.

    Google Scholar 

  • MahrtL., and Pan, H.-L.: 1984, ‘A Two-Layer Model of Soil Hydrology’, Boundary-Layer Meteorol. 29, 1–20.

    Google Scholar 

  • McCumber, M. C. and Pielke, R. A.: 1981, ‘Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model Soil Layer’, J. Geophys. Res. 86, 9929–9938.

    Google Scholar 

  • McNaughton, J. L.: 1976, ‘Evaporation and Advection. I. Evaporation from Extensive Homogeneous Surfaces’, Quart. J. Roy. Meteorol. Soc. 102, 181–191.

    Google Scholar 

  • Oke, T.: 1978, Boundary Layer Climates, Methuen, London, 372 pp.

    Google Scholar 

  • Rutter, A. J., Kershaw, K. A., Robins, P. C., and Morton, A. J.: 1971, ‘A Predictive Model of Rainfall Interception in Forests, 1. Derivation of the Model From a Plantation of Corsican Pine’, Agric. Meteorol. 9, 367–384.

    Google Scholar 

  • Troen, I. and Mahrt, L.: 1986, ‘A Simple Model of the Boundary Layer: Sensitivity to Surface Evaporation’, Boundary-Layer Meteorol. 37, 129–148.

    Google Scholar 

  • Van Bavel, C. H. M. and Hillel, D. I.: 1976, ‘Calculating Potential and Actual Evaporation from a Bare-Soil Surface by Simulation of Concurrent Flow of Water and Heat’, Agric. Meteorol. 17, 453–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, HL., Mahrt, L. Interaction between soil hydrology and boundary-layer development. Boundary-Layer Meteorol 38, 185–202 (1987). https://doi.org/10.1007/BF00121563

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121563

Keywords

Navigation