Skip to main content

Advertisement

Log in

Complex molecular regulation of tyrosine hydroxylase

  • Translational Neurosciences - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin–proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abate C, Smith JA, Joh TH (1988) Characterization of the catalytic domain of bovine adrenal tyrosine hydroxylase. Biochem Biophys Res Commun 151(3):1446–1453

    CAS  PubMed  Google Scholar 

  • Ahn JH, Kim Y, Kim HS, Greengard P, Nairn AC (2011) Protein kinase C-dependent dephosphorylation of tyrosine hydroxylase requires the B56delta heterotrimeric form of protein phosphatase 2A. PLoS One 6(10):e26292. doi:10.1371/journal.pone.0026292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albert KA, Helmer-Matyjek E, Nairn AC, Muller TH, Haycock JW, Greene LA, Goldstein M, Greengard P (1984) Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase. Proc Natl Acad Sci USA 81(24):7713–7717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alerte TN, Akinfolarin AA, Friedrich EE, Mader SA, Hong CS, Perez RG (2008) α-Synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice. Neurosci Lett 435(1):24–29. doi:10.1016/j.neulet.2008.02.014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almas B, Le Bourdelles B, Flatmark T, Mallet J, Haavik J (1992) Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/activity studies and mechanistic implications. Eur J Biochem 209(1):249–255

    CAS  PubMed  Google Scholar 

  • Alterio J, Ravassard P, Haavik J, Le Caer JP, Biguet NF, Waksman G, Mallet J (1998) Human tyrosine hydroxylase isoforms. Inhibition by excess tetrahydropterin and unusual behavior of isoform 3 after camp-dependent protein kinase phosphorylation. J Biol Chem 273(17):10196–10201

    CAS  PubMed  Google Scholar 

  • Andersson KK, Cox DD, Que L Jr, Flatmark T, Haavik J (1988) Resonance Raman studies on the blue-green-colored bovine adrenal tyrosine 3-monooxygenase (tyrosine hydroxylase). Evidence that the feedback inhibitors adrenaline and noradrenaline are coordinated to iron. J Biol Chem 263(35):18621–18626

    CAS  PubMed  Google Scholar 

  • Andersson KK, Vassort C, Brennan BA, Que L Jr, Haavik J, Flatmark T, Gros F, Thibault J (1992) Purification and characterization of the blue-green rat phaeochromocytoma (PC12) tyrosine hydroxylase with a dopamine-Fe(III) complex. Reversal of the endogenous feedback inhibition by phosphorylation of serine-40. Biochem J 284(Pt 3):687–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apostolova G, Dechant G (2009) Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 151(1):30–38. doi:10.1016/j.autneu.2009.08.012

    CAS  PubMed  Google Scholar 

  • Aranyi T, Sarkis C, Berrard S, Sardin K, Siron V, Khalfallah O, Mallet J (2007) Sodium butyrate modifies the stabilizing complexes of tyrosine hydroxylase mRNA. Biochem Biophys Res Commun 359(1):15–19. doi:10.1016/j.bbrc.2007.05.025

    CAS  PubMed  Google Scholar 

  • Bademci G, Vance JM, Wang L (2012) Tyrosine hydroxylase gene: another piece of the genetic puzzle of Parkinson’s disease. CNS Neurol Disord Drug Targets 11(4):469–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey SW, Dillard SB, Thomas KB, Ayling JE (1989) Changes in the cofactor binding domain of bovine striatal tyrosine hydroxylase at physiological pH upon cAMP-dependent phosphorylation mapped with tetrahydrobiopterin analogues. Biochemistry 28(2):494–504

    CAS  PubMed  Google Scholar 

  • Bauer AL, Paulding WR, Striet JB, Schnell PO, Czyzyk-Krzeska MF (2002) Endogenous von Hippel–Lindau tumor suppressor protein regulates catecholaminergic phenotype in PC12 cells. Cancer Res 62(6):1682–1687

    CAS  PubMed  Google Scholar 

  • Beitner-Johnson D, Millhorn DE (1998) Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism. J Biol Chem 273(31):19834–19839

    CAS  PubMed  Google Scholar 

  • Bellivier F (2005) Schizophrenia, antipsychotics and diabetes: genetic aspects. Eur Psychiatry 20(Suppl 4):S335–S339

    PubMed  Google Scholar 

  • Berresheim U, Kuhn DM (1994) Dephosphorylation of tyrosine hydroxylase by brain protein phosphatases: a predominant role for type 2A. Brain Res 637(1–2):273–276

    CAS  PubMed  Google Scholar 

  • Best JA, Tank AW (1998) The THCRE2 site in the rat tyrosine hydroxylase gene promoter is responsive to phorbol ester. Neurosci Lett 258(3):131–134

    CAS  PubMed  Google Scholar 

  • Bevilaqua LR, Graham ME, Dunkley PR, von Nagy-Felsobuki EI, Dickson PW (2001) Phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to increase the rate of phosphorylation of Ser(40). J Biol Chem 276(44):40411–40416. doi:10.1074/jbc.M105280200

    CAS  PubMed  Google Scholar 

  • Bevilaqua LR, Cammarota M, Dickson PW, Sim AT, Dunkley PR (2003) Role of protein phosphatase 2C from bovine adrenal chromaffin cells in the dephosphorylation of phospho-serine 40 tyrosine hydroxylase. J Neurochem 85(6):1368–1373

    CAS  PubMed  Google Scholar 

  • Birman S, Morgan B, Anzivino M, Hirsh J (1994) A novel and major isoform of tyrosine hydroxylase in Drosophila is generated by alternative RNA processing. J Biol Chem 269(42):26559–26567

    CAS  PubMed  Google Scholar 

  • Bobrovskaya L, Dunkley PR, Dickson PW (2004) Phosphorylation of Ser19 increases both Ser40 phosphorylation and enzyme activity of tyrosine hydroxylase in intact cells. J Neurochem 90(4):857–864. doi:10.1111/j.1471-4159.2004.02550.x

    CAS  PubMed  Google Scholar 

  • Bodeau-Pean S, Ravassard P, Neuner-Jehle M, Faucheux B, Mallet J, Dumas S (1999) A human tyrosine hydroxylase isoform associated with progressive supranuclear palsy shows altered enzymatic activity. J Biol Chem 274(6):3469–3475

    CAS  PubMed  Google Scholar 

  • Bowling KM, Huang Z, Xu D, Ferdousy F, Funderburk CD, Karnik N, Neckameyer W, O’Donnell JM (2008) Direct binding of GTP cyclohydrolase and tyrosine hydroxylase: regulatory interactions between key enzymes in dopamine biosynthesis. J Biol Chem 283(46):31449–31459. doi:10.1074/jbc.M802552200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briggs GD, Gordon SL, Dickson PW (2011) Mutational analysis of catecholamine binding in tyrosine hydroxylase. Biochemistry 50(9):1545–1555. doi:10.1021/bi101455b

    CAS  PubMed  Google Scholar 

  • Cahill AL, Horwitz J, Perlman RL (1989) Phosphorylation of tyrosine hydroxylase in protein kinase C-deficient PC12 cells. Neuroscience 30(3):811–818

    CAS  PubMed  Google Scholar 

  • Campbell DG, Hardie DG, Vulliet PR (1986) Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J Biol Chem 261(23):10489–10492

    CAS  PubMed  Google Scholar 

  • Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, Egana L, Torres GE (2010) A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem 285(3):1957–1966. doi:10.1074/jbc.M109.054510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cazorla P, Smidt MP, O’Malley KL, Burbach JP (2000) A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem 74(5):1829–1837

    CAS  PubMed  Google Scholar 

  • Chen X, Xu L, Radcliffe P, Sun B, Tank AW (2008) Activation of tyrosine hydroxylase mRNA translation by cAMP in midbrain dopaminergic neurons. Mol Pharmacol 73(6):1816–1828. doi:10.1124/mol.107.043968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou A, Toon C, Pickett J, Gill AJ (2013) von Hippel–Lindau syndrome. Front Horm Res 41:30–49. doi:10.1159/000345668

    CAS  PubMed  Google Scholar 

  • Chow MS, Eser BE, Wilson SA, Hodgson KO, Hedman B, Fitzpatrick PF, Solomon EI (2009) Spectroscopy and kinetics of wild-type and mutant tyrosine hydroxylase: mechanistic insight into O2 activation. J Am Chem Soc 131(22):7685–7698. doi:10.1021/ja810080c

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–E130. doi:10.1038/ncb0502-e127

    CAS  PubMed  Google Scholar 

  • Coker GT 3rd, Studelska D, Harmon S, Burke W, O’Malley KL (1990) Analysis of tyrosine hydroxylase and insulin transcripts in human neuroendocrine tissues. Brain Res Mol Brain Res 8(2):93–98

    CAS  PubMed  Google Scholar 

  • Czyzyk-Krzeska MF, Beresh JE (1996) Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3′-untranslated region of the tyrosine hydroxylase mRNA. J Biol Chem 271(6):3293–3299

    CAS  PubMed  Google Scholar 

  • Daubner SC, Piper MM (1995) Deletion mutants of tyrosine hydroxylase identify a region critical for heparin binding. Protein Sci 4(3):538–541. doi:10.1002/pro.5560040320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daubner SC, Lauriano C, Haycock JW, Fitzpatrick PF (1992) Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP-dependent phosphorylation on enzyme activity. J Biol Chem 267(18):12639–12646

    CAS  PubMed  Google Scholar 

  • Daubner SC, Melendez J, Fitzpatrick PF (2000) Reversing the substrate specificities of phenylalanine and tyrosine hydroxylase: aspartate 425 of tyrosine hydroxylase is essential for l-DOPA formation. Biochemistry 39(32):9652–9661

    CAS  PubMed  Google Scholar 

  • Daubner SC, Moran GR, Fitzpatrick PF (2002) Role of tryptophan hydroxylase phe313 in determining substrate specificity. Biochem Biophys Res Commun 292(3):639–641. doi:10.1006/bbrc.2002.6719

    CAS  PubMed  Google Scholar 

  • Daubner SC, McGinnis JT, Gardner M, Kroboth SL, Morris AR, Fitzpatrick PF (2006) A flexible loop in tyrosine hydroxylase controls coupling of amino acid hydroxylation to tetrahydropterin oxidation. J Mol Biol 359(2):299–307. doi:10.1016/j.jmb.2006.03.016

    PubMed Central  PubMed  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12. doi:10.1016/j.abb.2010.12.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson PW, Briggs GD (2013) Tyrosine hydroxylase: regulation by feedback inhibition and phosphorylation. Adv Pharmacol 68:13–21. doi:10.1016/B978-0-12-411512-5.00002-6

    CAS  PubMed  Google Scholar 

  • Diliberto EJ Jr, Daniels AJ, Viveros OH (1991) Multicompartmental secretion of ascorbate and its dual role in dopamine beta-hydroxylation. Am J Clin Nutr 54(6 Suppl):1163S–1172S

    CAS  PubMed  Google Scholar 

  • Dix TA, Kuhn DM, Benkovic SJ (1987) Mechanism of oxygen activation by tyrosine hydroxylase. Biochemistry 26(12):3354–3361

    CAS  PubMed  Google Scholar 

  • Doskeland AP, Flatmark T (2002) Ubiquitination of soluble and membrane-bound tyrosine hydroxylase and degradation of the soluble form. Eur J Biochem 269(5):1561–1569

    CAS  PubMed  Google Scholar 

  • Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL (2006) Substrate-mediated enhancement of phosphorylated tyrosine hydroxylase in nigrostriatal dopamine neurons: evidence for a role of α-synuclein. J Neurochem 96(4):950–959. doi:10.1111/j.1471-4159.2005.03606.x

    CAS  PubMed  Google Scholar 

  • Dumas S, Le Hir H, Bodeau-Pean S, Hirsch E, Thermes C, Mallet J (1996) New species of human tyrosine hydroxylase mRNA are produced in variable amounts in adrenal medulla and are overexpressed in progressive supranuclear palsy. J Neurochem 67(1):19–25

    CAS  PubMed  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91(5):1025–1043. doi:10.1111/j.1471-4159.2004.02797.x

    CAS  PubMed  Google Scholar 

  • Edelman AM, Raese JD, Lazar MA, Barchas JD (1978) In vitro phosphorylation of a purified preparation of bovine corpus striatal tyrosine hydroxylase. Commun Psychopharmacol 2(6):461–465

    CAS  PubMed  Google Scholar 

  • Ellis HR, Daubner SC, Fitzpatrick PF (2000) Mutation of serine 395 of tyrosine hydroxylase decouples oxygen–oxygen bond cleavage and tyrosine hydroxylation. Biochemistry 39(14):4174–4181

    CAS  PubMed  Google Scholar 

  • Ernsberger U (2001) The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 94(1–2):1–13. doi:10.1016/S1566-0702(01)00336-8

    CAS  PubMed  Google Scholar 

  • Fitzpatrick PF (1988) The pH dependence of binding of inhibitors to bovine adrenal tyrosine hydroxylase. J Biol Chem 263(31):16058–16062

    CAS  PubMed  Google Scholar 

  • Fitzpatrick PF (1989) The metal requirement of rat tyrosine hydroxylase. Biochem Biophys Res Commun 161(1):211–215

    CAS  PubMed  Google Scholar 

  • Fitzpatrick PF (1991) Steady-state kinetic mechanism of rat tyrosine hydroxylase. Biochemistry 30(15):3658–3662

    CAS  PubMed  Google Scholar 

  • Fitzpatrick PF (1999) Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem 68:355–381. doi:10.1146/annurev.biochem.68.1.355

    CAS  PubMed  Google Scholar 

  • Fitzpatrick PF (2003) Mechanism of aromatic amino acid hydroxylation. Biochemistry 42(48):14083–14091. doi:10.1021/bi035656u

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujisawa H, Okuno S (2005) Regulatory mechanism of tyrosine hydroxylase activity. Biochem Biophys Res Commun 338(1):271–276. doi:10.1016/j.bbrc.2005.07.183

    CAS  PubMed  Google Scholar 

  • Fukuda T, Ishii K, Nanmoku T, Isobe K, Kawakami Y, Takekoshi K (2007) 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside stimulates tyrosine hydroxylase activity and catecholamine secretion by activation of AMP-activated protein kinase in PC12 cells. J Neuroendocrinol 19(8):621–631. doi:10.1111/j.1365-2826.2007.01570.x

    CAS  PubMed  Google Scholar 

  • Funakoshi H, Okuno S, Fujisawa H (1991) Different effects on activity caused by phosphorylation of tyrosine hydroxylase at serine 40 by three multifunctional protein kinases. J Biol Chem 266(24):15614–15620

    CAS  PubMed  Google Scholar 

  • Gahn LG, Roskoski R Jr (1995) Thermal stability and CD analysis of rat tyrosine hydroxylase. Biochemistry 34(1):252–256

    CAS  PubMed  Google Scholar 

  • Gardaneh M, Gilbert J, Haber M, Norris MD, Cohn SL, Schmidt ML, Marshall GM (2000) Synergy between 5′ and 3′ flanking regions of the human tyrosine hydroxylase gene ensures specific, high-level expression in neuroblastoma cells. Neurosci Lett 292(3):147–150

    CAS  PubMed  Google Scholar 

  • Ghee M, Baker H, Miller JC, Ziff EB (1998) AP-1, CREB and CBP transcription factors differentially regulate the tyrosine hydroxylase gene. Brain Res Mol Brain Res 55(1):101–114

    CAS  PubMed  Google Scholar 

  • Goncalves CA, Hall A, Sim AT, Bunn SJ, Marley PD, Cheah TB, Dunkley PR (1997) Tyrosine hydroxylase phosphorylation in digitonin-permeabilized bovine adrenal chromaffin cells: the effect of protein kinase and phosphatase inhibitors on Ser19 and Ser40 phosphorylation. J Neurochem 69(6):2387–2396

    CAS  PubMed  Google Scholar 

  • Gonzalez-Flores O, Gomora-Arrati P, Garcia-Juarez M, Miranda-Martinez A, Armengual-Villegas A, Camacho-Arroyo I, Guerra-Araiza C (2011) Progesterone receptor isoforms differentially regulate the expression of tryptophan and tyrosine hydroxylase and glutamic acid decarboxylase in the rat hypothalamus. Neurochem Int 59(5):671–676. doi:10.1016/j.neuint.2011.06.013

    CAS  PubMed  Google Scholar 

  • Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC (1997) Crystal structure of tyrosine hydroxylase at 2.3 A and its implications for inherited neurodegenerative diseases. Nat Struct Biol 4(7):578–585

    CAS  PubMed  Google Scholar 

  • Goodwill KE, Sabatier C, Stevens RC (1998) Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site. Biochemistry 37(39):13437–13445. doi:10.1021/bi981462g

    CAS  PubMed  Google Scholar 

  • Gordon SL, Quinsey NS, Dunkley PR, Dickson PW (2008) Tyrosine hydroxylase activity is regulated by two distinct dopamine-binding sites. J Neurochem 106(4):1614–1623. doi:10.1111/j.1471-4159.2008.05509.x

    CAS  PubMed  Google Scholar 

  • Gordon SL, Bobrovskaya L, Dunkley PR, Dickson PW (2009a) Differential regulation of human tyrosine hydroxylase isoforms 1 and 2 in situ: Isoform 2 is not phosphorylated at Ser35. Biochim Biophys Acta 1793(12):1860–1867. doi:10.1016/j.bbamcr.2009.10.001

    CAS  PubMed  Google Scholar 

  • Gordon SL, Webb JK, Shehadeh J, Dunkley PR, Dickson PW (2009b) The low affinity dopamine binding site on tyrosine hydroxylase: the role of the N-terminus and in situ regulation of enzyme activity. Neurochem Res 34(10):1830–1837. doi:10.1007/s11064-009-9989-5

    CAS  PubMed  Google Scholar 

  • Gozal E, Shah ZA, Pequignot JM, Pequignot J, Sachleben LR, Czyzyk-Krzeska MF, Li RC, Guo SZ, Gozal D (2005) Tyrosine hydroxylase expression and activity in the rat brain: differential regulation after long-term intermittent or sustained hypoxia. J Appl Physiol 99(2):642–649. doi:10.1152/japplphysiol.00880.2004

    CAS  PubMed  Google Scholar 

  • Grenett HE, Ledley FD, Reed LL, Woo SL (1987) Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proc Natl Acad Sci USA 84(16):5530–5534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith LC, Schulman H (1988) The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase. J Biol Chem 263(19):9542–9549

    CAS  PubMed  Google Scholar 

  • Grima B, Lamouroux A, Blanot F, Biguet NF, Mallet J (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci USA 82(2):617–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature 326(6114):707–711. doi:10.1038/326707a0

    CAS  PubMed  Google Scholar 

  • Guo Z, Du X, Iacovitti L (1998) Regulation of tyrosine hydroxylase gene expression during transdifferentiation of striatal neurons: changes in transcription factors binding the AP-1 site. J Neurosci 18(20):8163–8174

    CAS  PubMed  Google Scholar 

  • Haavik J, Andersson KK, Petersson L, Flatmark T (1988) Soluble tyrosine hydroxylase (tyrosine 3-monooxygenase) from bovine adrenal medulla: large-scale purification and physicochemical properties. Biochim Biophys Acta 953(2):142–156

    CAS  PubMed  Google Scholar 

  • Haavik J, Schelling DL, Campbell DG, Andersson KK, Flatmark T, Cohen P (1989) Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: evidence from the effects of okadaic acid. FEBS Lett 251(1–2):36–42

    CAS  PubMed  Google Scholar 

  • Haavik J, Martinez A, Flatmark T (1990) pH-dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of Ser-40. FEBS Lett 262(2):363–365

    CAS  PubMed  Google Scholar 

  • Haavik J, Le Bourdelles B, Martinez A, Flatmark T, Mallet J (1991) Recombinant human tyrosine hydroxylase isozymes. Reconstitution with iron and inhibitory effect of other metal ions. Eur J Biochem 199(2):371–378

    CAS  PubMed  Google Scholar 

  • Haavik J, Blau N, Thony B (2008) Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 29(7):891–902. doi:10.1002/humu.20700

    CAS  PubMed  Google Scholar 

  • Halloran SM, Vulliet PR (1994) Microtubule-associated protein kinase-2 phosphorylates and activates tyrosine hydroxylase following depolarization of bovine adrenal chromaffin cells. J Biol Chem 269(49):30960–30965

    CAS  PubMed  Google Scholar 

  • Halskau O Jr, Ying M, Baumann A, Kleppe R, Rodriguez-Larrea D, Almas B, Haavik J, Martinez A (2009) Three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes. J Biol Chem 284(47):32758–32769. doi:10.1074/jbc.M109.027706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada WuJ, Haycock JW, Goldstein M (1996) Regulation of l-DOPA biosynthesis by site-specific phosphorylation of tyrosine hydroxylase in AtT-20 cells expressing wild-type and serine 40-substituted enzyme. J Neurochem 67(2):629–635

    CAS  PubMed  Google Scholar 

  • Hastings TG, Zigmond MJ (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J Neurochem 63(3):1126–1132

    CAS  PubMed  Google Scholar 

  • Haycock JW (1990) Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem 265(20):11682–11691

    CAS  PubMed  Google Scholar 

  • Haycock JW (1991) Four forms of tyrosine hydroxylase are present in human adrenal medulla. J Neurochem 56(6):2139–2142

    CAS  PubMed  Google Scholar 

  • Haycock JW (1993) Multiple forms of tyrosine hydroxylase in human neuroblastoma cells: quantitation with isoform-specific antibodies. J Neurochem 60(2):493–502

    CAS  PubMed  Google Scholar 

  • Haycock JW (2002a) Peptide substrates for ERK1/2: structure-function studies of serine 31 in tyrosine hydroxylase. J Neurosci Methods 116(1):29–34

    CAS  PubMed  Google Scholar 

  • Haycock JW (2002b) Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J Neurochem 81(5):947–953

    CAS  PubMed  Google Scholar 

  • Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266(9):5650–5657

    CAS  PubMed  Google Scholar 

  • Haycock JW, Wakade AR (1992) Activation and multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. J Neurochem 58(1):57–64

    CAS  PubMed  Google Scholar 

  • Haycock JW, Ahn NG, Cobb MH, Krebs EG (1992) ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci USA 89(6):2365–2369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haycock JW, Lew JY, Garcia-Espana A, Lee KY, Harada K, Meller E, Goldstein M (1998) Role of serine-19 phosphorylation in regulating tyrosine hydroxylase studied with site- and phosphospecific antibodies and site-directed mutagenesis. J Neurochem 71(4):1670–1675

    CAS  PubMed  Google Scholar 

  • He X, Lee KY, Li LhL, Meller E, Goldstein M (1996) Relationship between enzymatic activity and oligomerization state of tyrosine hydroxylase. J Biomed Sci 3(5):332–337

    CAS  PubMed  Google Scholar 

  • Hebert MA, Serova LI, Sabban EL (2005) Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen-activated protein kinases in the rat locus coeruleus. J Neurochem 95(2):484–498. doi:10.1111/j.1471-4159.2005.03386.x

    CAS  PubMed  Google Scholar 

  • Hiremagalur B, Nankova B, Nitahara J, Zeman R, Sabban EL (1993) Nicotine increases expression of tyrosine hydroxylase gene. Involvement of protein kinase A-mediated pathway. J Biol Chem 268(31):23704–23711

    CAS  PubMed  Google Scholar 

  • Horellou P, Le Bourdelles B, Clot-Humbert J, Guibert B, Leviel V, Mallet J (1988) Multiple human tyrosine hydroxylase enzymes, generated through alternative splicing, have different specific activities in Xenopus oocytes. J Neurochem 51(2):652–655

    CAS  PubMed  Google Scholar 

  • Ichikawa S, Ichinose H, Nagatsu T (1990) Multiple mRNAs of monkey tyrosine hydroxylase. Biochem Biophys Res Commun 173(3):1331–1336

    CAS  PubMed  Google Scholar 

  • Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEBS Lett 219(1):79–82

    CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Yoshida M, Ueda S, Nagatsu T (1993) Increased heterogeneity of tyrosine hydroxylase in humans. Biochem Biophys Res Commun 195(1):158–165. doi:10.1006/bbrc.1993.2024

    CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994) Quantification of mRNA of tyrosine hydroxylase and aromatic l-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm 8(1–2):149–158

    CAS  Google Scholar 

  • Ichinose H, Suzuki T, Inagaki H, Ohye T, Nagatsu T (1999) Molecular genetics of dopa-responsive dystonia. Biol Chem 380(12):1355–1364. doi:10.1515/BC.1999.175

    CAS  PubMed  Google Scholar 

  • Isobe T, Ichimura T, Sunaya T, Okuyama T, Takahashi N, Kuwano R, Takahashi Y (1991) Distinct forms of the protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. J Mol Biol 217(1):125–132

    CAS  PubMed  Google Scholar 

  • Itagaki C, Isobe T, Taoka M, Natsume T, Nomura N, Horigome T, Omata S, Ichinose H, Nagatsu T, Greene LA, Ichimura T (1999) Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry 38(47):15673–15680

    CAS  PubMed  Google Scholar 

  • Iwawaki T, Kohno K, Kobayashi K (2000) Identification of a potential nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun 274(3):590–595. doi:10.1006/bbrc.2000.3204

    CAS  PubMed  Google Scholar 

  • Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136(4):531–540. doi:10.1242/dev.029769

    CAS  PubMed  Google Scholar 

  • Jacobsen KX, MacDonald H, Lemonde S, Daigle M, Grimes DA, Bulman DE, Albert PR (2008) A Nurr1 point mutant, implicated in Parkinson’s disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis 29(1):117–122. doi:10.1016/j.nbd.2007.08.003

    CAS  PubMed  Google Scholar 

  • Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL Jr (2013) A new model for allosteric regulation of phenylalanine hydroxylase: implications for disease and therapeutics. Arch Biochem Biophys 530(2):73–82. doi:10.1016/j.abb.2012.12.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensik PJ, Arbogast LA (2011) Differential and interactive effects of ligand-bound progesterone receptor A and B isoforms on tyrosine hydroxylase promoter activity. J Neuroendocrinol 23(10):915–925. doi:10.1111/j.1365-2826.2011.02197.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin H, Romano G, Marshall C, Donaldson AE, Suon S, Iacovitti L (2006) Tyrosine hydroxylase gene regulation in human neuronal progenitor cells does not depend on Nurr1 as in the murine and rat systems. J Cell Physiol 207(1):49–57. doi:10.1002/jcp.20534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joh TH, Park DH, Reis DJ (1978) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc Natl Acad Sci USA 75(10):4744–4748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun 146(3):971–975

    CAS  PubMed  Google Scholar 

  • Kansy JW, Daubner SC, Nishi A, Sotogaku N, Lloyd MD, Nguyen C, Lu L, Haycock JW, Hope BT, Fitzpatrick PF, Bibb JA (2004) Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J Neurochem 91(2):374–384. doi:10.1111/j.1471-4159.2004.02723.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahata I, Tokuoka H, Parvez H, Ichinose H (2009) Accumulation of phosphorylated tyrosine hydroxylase into insoluble protein aggregates by inhibition of an ubiquitin-proteasome system in PC12D cells. J Neural Transm 116(12):1571–1578. doi:10.1007/s00702-009-0304-z

    CAS  PubMed  Google Scholar 

  • Kelly BB, Hedlund E, Kim C, Ishiguro H, Isacson O, Chikaraishi DM, Kim KS, Feng G (2006) A tyrosine hydroxylase-yellow fluorescent protein knock-in reporter system labeling dopaminergic neurons reveals potential regulatory role for the first intron of the rodent tyrosine hydroxylase gene. Neuroscience 142(2):343–354. doi:10.1016/j.neuroscience.2006.06.032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler MA, Yang M, Gollomp KL, Jin H, Iacovitti L (2003) The human tyrosine hydroxylase gene promoter. Brain Res Mol Brain Res 112(1–2):8–23

    CAS  PubMed  Google Scholar 

  • Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ, Lim JK, Anderson T, Isacson O (2003) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85(3):622–634

    CAS  PubMed  Google Scholar 

  • Kim SM, Yang JW, Park MJ, Lee JK, Kim SU, Lee YS, Lee MA (2006) Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Biochem Biophys Res Commun 346(2):426–435. doi:10.1016/j.bbrc.2006.05.142

    CAS  PubMed  Google Scholar 

  • Kleppe R, Toska K, Haavik J (2001) Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphoserine 40-dependent association. J Neurochem 77(4):1097–1107

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Nagatsu T (2005) Molecular genetics of tyrosine 3-monooxygenase and inherited diseases. Biochem Biophys Res Commun 338(1):267–270. doi:10.1016/j.bbrc.2005.07.186

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kiuchi K, Ishii A, Kaneda N, Kurosawa Y, Fujita K, Nagatsu T (1988) Expression of four types of human tyrosine hydroxylase in COS cells. FEBS Lett 238(2):431–434

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Hata T, Watanabe Y, Fujita K, Nagatsu T (1995) Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem 270(45):27235–27243

    CAS  PubMed  Google Scholar 

  • Kroll SL, Paulding WR, Schnell PO, Barton MC, Conaway JW, Conaway RC, Czyzyk-Krzeska MF (1999) von Hippel–Lindau protein induces hypoxia-regulated arrest of tyrosine hydroxylase transcript elongation in pheochromocytoma cells. J Biol Chem 274(42):30109–30114

    CAS  PubMed  Google Scholar 

  • Kuczenski R (1973) Soluble, membrane-bound, and detergent-solubilized rat striatal tyrosine hydroxylase. pH-dependent cofactor binding. J Biol Chem 248(14):5074–5080

    CAS  PubMed  Google Scholar 

  • Kuczenski R (1983) Effects of phospholipases on the kinetic properties of rat striatal membrane-bound tyrosine hydroxylase. J Neurochem 40(3):821–829

    CAS  PubMed  Google Scholar 

  • Kuhn DM, Arthur RE Jr, Thomas DM, Elferink LA (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J Neurochem 73(3):1309–1317

    CAS  PubMed  Google Scholar 

  • Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67(2):443–462

    CAS  PubMed  Google Scholar 

  • Laniece P, Le Hir H, Bodeau-Pean S, Charon Y, Valentin L, Thermes C, Mallet J, Dumas S (1996) A novel rat tyrosine hydroxylase mRNA species generated by alternative splicing. J Neurochem 66(5):1819–1825

    CAS  PubMed  Google Scholar 

  • Lazar MA, Truscott RJ, Raese JD, Barchas JD (1981) Thermal denaturation of native striatal tyrosine hydroxylase: increased thermolability of the phosphorylated form of the enzyme. J Neurochem 36(2):677–682

    CAS  PubMed  Google Scholar 

  • Lazaroff M, Qi Y, Chikaraishi DM (1998) Differentiation of a catecholaminergic CNS cell line modifies tyrosine hydroxylase transcriptional regulation. J Neurochem 71(1):51–59

    CAS  PubMed  Google Scholar 

  • Le Bourdelles B, Boularand S, Boni C, Horellou P, Dumas S, Grima B, Mallet J (1988) Analysis of the 5′ region of the human tyrosine hydroxylase gene: combinatorial patterns of exon splicing generate multiple regulated tyrosine hydroxylase isoforms. J Neurochem 50(3):988–991

    PubMed  Google Scholar 

  • Leal RB, Sim AT, Goncalves CA, Dunkley PR (2002) Tyrosine hydroxylase dephosphorylation by protein phosphatase 2A in bovine adrenal chromaffin cells. Neurochem Res 27(3):207–213

    CAS  PubMed  Google Scholar 

  • Lebel M, Gauthier Y, Moreau A, Drouin J (2001) Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity binding site. J Neurochem 77(2):558–567

    CAS  PubMed  Google Scholar 

  • Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281(26):17644–17651. doi:10.1074/jbc.M512194200

    CAS  PubMed  Google Scholar 

  • Lenartowski R, Goc A (2011) Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci 29(8):873–883. doi:10.1016/j.ijdevneu.2011.07.006

    CAS  PubMed  Google Scholar 

  • Lenartowski R, Grzybowski T, Miscicka-Sliwka D, Wojciechowski W, Goc A (2003) The bovine tyrosine hydroxylase gene associates in vitro with the nuclear matrix by its first intron sequence. Acta Biochim Pol 50(3):865–873

  • Leong SL, Cappai R, Barnham KJ, Pham CL (2009) Modulation of α-synuclein aggregation by dopamine: a review. Neurochem Res 34(10):1838–1846. doi:10.1007/s11064-009-9986-8

    CAS  PubMed  Google Scholar 

  • Levitt M, Spector S, Sjoerdsma A, Udenfriend S (1965) Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J Pharmacol Exp Ther 148:1–8

    CAS  PubMed  Google Scholar 

  • Lewis DA, Melchitzky DS, Haycock JW (1993) Four isoforms of tyrosine hydroxylase are expressed in human brain. Neuroscience 54(2):477–492

    CAS  PubMed  Google Scholar 

  • Lewis DA, Melchitzky DS, Haycock JW (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res 656(1):1–13

    CAS  PubMed  Google Scholar 

  • Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM (2004) Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 25(3):536–547. doi:10.1016/j.mcn.2003.10.010

    CAS  PubMed  Google Scholar 

  • Lindgren N, Goiny M, Herrera-Marschitz M, Haycock JW, Hokfelt T, Fisone G (2002) Activation of extracellular signal-regulated kinases 1 and 2 by depolarization stimulates tyrosine hydroxylase phosphorylation and dopamine synthesis in rat brain. Eur J Neurosci 15(4):769–773

    PubMed  Google Scholar 

  • Liu B, Arbogast LA (2008) Phosphorylation state of tyrosine hydroxylase in the stalk-median eminence is decreased by progesterone in cycling female rats. Endocrinology 149(4):1462–1469. doi:10.1210/en.2007-1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Vrana KE (1991) Leucine zippers and coiled-coils in the aromatic amino acid hydroxylases. Neurochem Int 18(1):27–31

    CAS  PubMed  Google Scholar 

  • Lohse DL, Fitzpatrick PF (1993) Identification of the intersubunit binding region in rat tyrosine hydroxylase. Biochem Biophys Res Commun 197(3):1543–1548. doi:10.1006/bbrc.1993.2653

    CAS  PubMed  Google Scholar 

  • Lopez Verrilli MA, Pirola CJ, Pascual MM, Dominici FP, Turyn D, Gironacci MM (2009) Angiotensin-(1-7) through AT receptors mediates tyrosine hydroxylase degradation via the ubiquitin–proteasome pathway. J Neurochem 109(2):326–335. doi:10.1111/j.1471-4159.2009.05912.x

    PubMed  Google Scholar 

  • Lou H, Montoya SE, Alerte TN, Wang J, Wu J, Peng X, Hong CS, Friedrich EE, Mader SA, Pedersen CJ, Marcus BS, McCormack AL, Di Monte DA, Daubner SC, Perez RG (2010) Serine 129 phosphorylation reduces the ability of α-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. J Biol Chem 285(23):17648–17661. doi:10.1074/jbc.M110.100867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovenberg W, Bruckwick EA, Hanbauer I (1975) ATP, cyclic AMP, and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor. Proc Natl Acad Sci USA 72(8):2955–2958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luke TM, Hexum TD (2008) Tyrosine hydroxylase phosphorylation increases in response to ATP and neuropeptide Y co-stimulation of ERK2 phosphorylation. Pharmacol Res 58(1):52–57. doi:10.1016/j.phrs.2008.06.010

    CAS  PubMed  Google Scholar 

  • Maass A, Scholz J, Moser A (2003) Modeled ligand-protein complexes elucidate the origin of substrate specificity and provide insight into catalytic mechanisms of phenylalanine hydroxylase and tyrosine hydroxylase. Eur J Biochem 270(6):1065–1075

    CAS  PubMed  Google Scholar 

  • Maharjan S, Serova L, Sabban EL (2005) Transcriptional regulation of tyrosine hydroxylase by estrogen: opposite effects with estrogen receptors α and beta and interactions with cyclic AMP. J Neurochem 93(6):1502–1514. doi:10.1111/j.1471-4159.2005.03142.x

    CAS  PubMed  Google Scholar 

  • Maharjan S, Serova LI, Sabban EL (2010) Membrane-initiated estradiol signaling increases tyrosine hydroxylase promoter activity with ER α in PC12 cells. J Neurochem 112(1):42–55. doi:10.1111/j.1471-4159.2009.06430.x

    CAS  PubMed  Google Scholar 

  • Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103(8):2874–2879. doi:10.1073/pnas.0511153103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez A, Haavik J, Flatmark T, Arrondo JL, Muga A (1996) Conformational properties and stability of tyrosine hydroxylase studied by infrared spectroscopy. Effect of iron/catecholamine binding and phosphorylation. J Biol Chem 271(33):19737–19742

    CAS  PubMed  Google Scholar 

  • Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282(2):467–479. doi:10.1016/j.ydbio.2005.03.028

    CAS  PubMed  Google Scholar 

  • McCulloch RI, Fitzpatrick PF (1999) Limited proteolysis of tyrosine hydroxylase identifies residues 33-50 as conformationally sensitive to phosphorylation state and dopamine binding. Arch Biochem Biophys 367(1):143–145. doi:10.1006/abbi.1999.1259

    CAS  PubMed  Google Scholar 

  • McCulloch RI, Daubner SC, Fitzpatrick PF (2001) Effects of substitution at serine 40 of tyrosine hydroxylase on catecholamine binding. Biochemistry 40(24):7273–7278

    CAS  PubMed  Google Scholar 

  • McTigue M, Cremins J, Halegoua S (1985) Nerve growth factor and other agents mediate phosphorylation and activation of tyrosine hydroxylase. A convergence of multiple kinase activities. J Biol Chem 260(15):9047–9056

    CAS  PubMed  Google Scholar 

  • Meligeni JA, Haycock JW, Bennett WF, Waymire JC (1982) Phosphorylation and activation of tyrosine hydroxylase mediate the cAMP-induced increase in catecholamine biosynthesis in adrenal chromaffin cells. J Biol Chem 257(21):12632–12640

    CAS  PubMed  Google Scholar 

  • Messmer K, Remington MP, Skidmore F, Fishman PS (2007) Induction of tyrosine hydroxylase expression by the transcription factor Pitx3. Int J Dev Neurosci 25(1):29–37. doi:10.1016/j.ijdevneu.2006.11.003

    CAS  PubMed  Google Scholar 

  • Meyer-Klaucke W, Winkler H, Schunemann V, Trautwein AX, Nolting HF, Haavik J (1996) Mossbauer, electron-paramagnetic-resonance and X-ray-absorption fine-structure studies of the iron environment in recombinant human tyrosine hydroxylase. Eur J Biochem 241(2):432–439

    CAS  PubMed  Google Scholar 

  • Milsted A, Serova L, Sabban EL, Dunphy G, Turner ME, Ely DL (2004) Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci Lett 369(3):203–207. doi:10.1016/j.neulet.2004.07.052

    CAS  PubMed  Google Scholar 

  • Min N, Joh TH, Kim KS, Peng C, Son JH (1994) 5′ upstream DNA sequence of the rat tyrosine hydroxylase gene directs high-level and tissue-specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. Brain Res Mol Brain Res 27(2):281–289

    CAS  PubMed  Google Scholar 

  • Min N, Joh TH, Corp ES, Baker H, Cubells JF, Son JH (1996) A transgenic mouse model to study transsynaptic regulation of tyrosine hydroxylase gene expression. J Neurochem 67(1):11–18

    CAS  PubMed  Google Scholar 

  • Mishra RR, Adhikary G, Simonson MS, Cherniack NS, Prabhakar NR (1998) Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression. Brain Res Mol Brain Res 59(1):74–83

    CAS  PubMed  Google Scholar 

  • Mogi M, Kojima K, Nagatsu T (1984) Detection of inactive or less active forms of tyrosine hydroxylase in human adrenals by a sandwich enzyme immunoassay. Anal Biochem 138(1):125–132

    CAS  PubMed  Google Scholar 

  • Morgenroth VH 3rd, Hegstrand LR, Roth RH, Greengard P (1975) Evidence for involvement of protein kinase in the activation by adenosine 3′:5′-monophosphate of brain tyrosine 3-monooxygenase. J Biol Chem 250(5):1946–1948

    CAS  PubMed  Google Scholar 

  • Moy LY, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279(52):54487–54493. doi:10.1074/jbc.M406636200

    CAS  PubMed  Google Scholar 

  • Nagamoto-Combs K, Piech KM, Best JA, Sun B, Tank AW (1997) Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation. J Biol Chem 272(9):6051–6058

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    CAS  PubMed  Google Scholar 

  • Nakashima A, Mori K, Suzuki T, Kurita H, Otani M, Nagatsu T, Ota A (1999) Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J Neurochem 72(5):2145–2153

    CAS  PubMed  Google Scholar 

  • Nakashima A, Hayashi N, Mori K, Kaneko YS, Nagatsu T, Ota A (2000) Positive charge intrinsic to Arg(37)–Arg(38) is critical for dopamine inhibition of the catalytic activity of human tyrosine hydroxylase type 1. FEBS Lett 465(1):59–63

    CAS  PubMed  Google Scholar 

  • Nakashima A, Kaneko YS, Mori K, Fujiwara K, Tsugu T, Suzuki T, Nagatsu T, Ota A (2002) The mutation of two amino acid residues in the N-terminus of tyrosine hydroxylase (TH) dramatically enhances the catalytic activity in neuroendocrine AtT-20 cells. J Neurochem 82(1):202–206

    CAS  PubMed  Google Scholar 

  • Nakashima A, Ota A, Sabban EL (2003) Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. Brain Res Mol Brain Res 112(1–2):61–69

    CAS  PubMed  Google Scholar 

  • Nakashima A, Hayashi N, Kaneko YS, Mori K, Egusa H, Nagatsu T, Ota A (2005) Deletion of N-terminus of human tyrosine hydroxylase type 1 enhances stability of the enzyme in AtT-20 cells. J Neurosci Res 81(1):110–120. doi:10.1002/jnr.20540

    CAS  PubMed  Google Scholar 

  • Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2007) RNAi of 14-3-3eta protein increases intracellular stability of tyrosine hydroxylase. Biochem Biophys Res Commun 363(3):817–821. doi:10.1016/j.bbrc.2007.09.042

    CAS  PubMed  Google Scholar 

  • Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2009) Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines. J Neural Transm 116(11):1355–1362. doi:10.1007/s00702-009-0227-8

    CAS  PubMed  Google Scholar 

  • Nakashima A, Mori K, Kaneko YS, Hayashi N, Nagatsu T, Ota A (2011) Phosphorylation of the N-terminal portion of tyrosine hydroxylase triggers proteasomal digestion of the enzyme. Biochem Biophys Res Commun 407(2):343–347. doi:10.1016/j.bbrc.2011.03.020

    CAS  PubMed  Google Scholar 

  • Nakashima A, Kaneko YS, Kodani Y, Mori K, Nagasaki H, Nagatsu T, Ota A (2013) Intracellular stability of tyrosine hydroxylase: phosphorylation and proteasomal digestion of the enzyme. Adv Pharmacol 68:3–11. doi:10.1016/B978-0-12-411512-5.00001-4

    CAS  PubMed  Google Scholar 

  • Nankova B, Hiremagalur B, Menezes A, Zeman R, Sabban E (1996) Promoter elements and second messenger pathways involved in transcriptional activation of tyrosine hydroxylase by ionomycin. Brain Res Mol Brain Res 35(1–2):164–172

    CAS  PubMed  Google Scholar 

  • Nasrin S, Ichinose H, Hidaka H, Nagatsu T (1994) Recombinant human tyrosine hydroxylase types 1–4 show regulatory kinetic properties for the natural (6R)-tetrahydrobiopterin cofactor. J Biochem 116(2):393–398

    CAS  PubMed  Google Scholar 

  • Obsilova V, Nedbalkova E, Silhan J, Boura E, Herman P, Vecer J, Sulc M, Teisinger J, Dyda F, Obsil T (2008) The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry 47(6):1768–1777. doi:10.1021/bi7019468

    CAS  PubMed  Google Scholar 

  • Ohye T, Ichinose H, Yoshizawa T, Kanazawa I, Nagatsu T (2001) A new splicing variant for human tyrosine hydroxylase in the adrenal medulla. Neurosci Lett 312(3):157–160

    CAS  PubMed  Google Scholar 

  • Okuno S, Fujisawa H (1985) A new mechanism for regulation of tyrosine 3-monooxygenase by end product and cyclic AMP-dependent protein kinase. J Biol Chem 260(5):2633–2635

    CAS  PubMed  Google Scholar 

  • Osaka H, Sabban EL (1997) Requirement for cAMP/calcium response element but not AP-1 site in fibroblast growth factor-2-elicited activation of tyrosine hydroxylase gene expression in PC12 cells. Brain Res Mol Brain Res 49(1–2):222–228

    CAS  PubMed  Google Scholar 

  • Ota A, Yoshida S, Nagatsu T (1995) Deletion mutagenesis of human tyrosine hydroxylase type 1 regulatory domain. Biochem Biophys Res Commun 213(3):1099–1106. doi:10.1006/bbrc.1995.2240

    CAS  PubMed  Google Scholar 

  • Ota A, Nakashima A, Mori K, Nagatsu T (1997) Effects of dopamine on N-terminus-deleted human tyrosine hydroxylase type 1 expressed in Escherichia coli. Neurosci Lett 229(1):57–60

    CAS  PubMed  Google Scholar 

  • Papanikolaou NA, Sabban EL (1999) Sp1/Egr1 motif: a new candidate in the regulation of rat tyrosine hydroxylase gene transcription by immobilization stress. J Neurochem 73(1):433–436

    CAS  PubMed  Google Scholar 

  • Papanikolaou NA, Sabban EL (2000) Ability of Egr1 to activate tyrosine hydroxylase transcription in PC12 cells. Cross-talk with AP-1 factors. J Biol Chem 275(35):26683–26689. doi:10.1074/jbc.M000049200

    CAS  PubMed  Google Scholar 

  • Parareda A, Villaescusa JC, Sanchez de Toledo J, Gallego S (2003) New splicing variants for human Tyrosine Hydroxylase gene with possible implications for the detection of minimal residual disease in patients with neuroblastoma. Neurosci Lett 336(1):29–32

    CAS  PubMed  Google Scholar 

  • Patankar S, Lazaroff M, Yoon SO, Chikaraishi DM (1997) A novel basal promoter element is required for expression of the rat tyrosine hydroxylase gene. J Neurosci 17(11):4076–4086

    CAS  PubMed  Google Scholar 

  • Paulding WR, Czyzyk-Krzeska MF (1999) Regulation of tyrosine hydroxylase mRNA stability by protein-binding, pyrimidine-rich sequence in the 3′-untranslated region. J Biol Chem 274(4):2532–2538

    CAS  PubMed  Google Scholar 

  • Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) α-Synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118(Pt 15):3523–3530. doi:10.1242/jcs.02481

    CAS  PubMed  Google Scholar 

  • Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22(8):3090–3099

  • Piech-Dumas KM, Best JA, Chen Y, Nagamoto-Combs K, Osterhout CA, Tank AW (2001) The cAMP responsive element and CREB partially mediate the response of the tyrosine hydroxylase gene to phorbol ester. J Neurochem 76(5):1376–1385

    CAS  PubMed  Google Scholar 

  • Que L Jr (2000) One motif—many different reactions. Nat Struct Biol 7(3):182–184. doi:10.1038/73270

    CAS  PubMed  Google Scholar 

  • Quinsey NS, Lenaghan CM, Dickson PW (1996) Identification of Gln313 and Pro327 as residues critical for substrate inhibition in tyrosine hydroxylase. J Neurochem 66(3):908–914

    CAS  PubMed  Google Scholar 

  • Raghuraman G, Rai V, Peng YJ, Prabhakar NR, Kumar GK (2009) Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal 11(8):1777–1789. doi:10.1089/ARS.2008.2368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsey AJ, Fitzpatrick PF (1998) Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37(25):8980–8986. doi:10.1021/bi980582l

    CAS  PubMed  Google Scholar 

  • Ramsey AJ, Fitzpatrick PF (2000) Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: specificity and thermodynamics. Biochemistry 39(4):773–778

    CAS  PubMed  Google Scholar 

  • Ramsey AJ, Daubner SC, Ehrlich JI, Fitzpatrick PF (1995) Identification of iron ligands in tyrosine hydroxylase by mutagenesis of conserved histidinyl residues. Protein Sci 4(10):2082–2086. doi:10.1002/pro.5560041013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rani CS, Elango N, Wang SS, Kobayashi K, Strong R (2009) Identification of an activator protein-1-like sequence as the glucocorticoid response element in the rat tyrosine hydroxylase gene. Mol Pharmacol 75(3):589–598. doi:10.1124/mol.108.051219

    PubMed Central  PubMed  Google Scholar 

  • Rao F, Zhang L, Wessel J, Zhang K, Wen G, Kennedy BP, Rana BK, Das M, Rodriguez-Flores JL, Smith DW, Cadman PE, Salem RM, Mahata SK, Schork NJ, Taupenot L, Ziegler MG, O’Connor DT (2007) Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo. Circulation 116(9):993–1006. doi:10.1161/CIRCULATIONAHA.106.682302

    CAS  PubMed  Google Scholar 

  • Ribeiro P, Kaufman S (1994) The effect of tetrahydrobiopterin on the in situ phosphorylation of tyrosine hydroxylase in rat striatal synaptosomes. Neurochem Res 19(5):541–548

    CAS  PubMed  Google Scholar 

  • Ribeiro P, Wang Y, Citron BA, Kaufman S (1992) Regulation of recombinant rat tyrosine hydroxylase by dopamine. Proc Natl Acad Sci USA 89(20):9593–9597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribeiro P, Wang Y, Citron BA, Kaufman S (1993) Deletion mutagenesis of rat PC12 tyrosine hydroxylase regulatory and catalytic domains. J Mol Neurosci 4(2):125–139. doi:10.1007/BF02782125

    CAS  PubMed  Google Scholar 

  • Roberts KM, Fitzpatrick PF (2013) Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life 65(4):350–357. doi:10.1002/iub.1144

    CAS  PubMed  Google Scholar 

  • Rodriguez-Pascual F, Ferrero R, Miras-Portugal MT, Torres M (1999) Phosphorylation of tyrosine hydroxylase by cGMP-dependent protein kinase in intact bovine chromaffin cells. Arch Biochem Biophys 366(2):207–214. doi:10.1006/abbi.1999.1199

    CAS  PubMed  Google Scholar 

  • Roe DF, Craviso GL, Waymire JC (2004) Nicotinic stimulation modulates tyrosine hydroxylase mRNA half-life and protein binding to the 3′UTR in a manner that requires transcription. Brain Res Mol Brain Res 120(2):91–102

    CAS  PubMed  Google Scholar 

  • Roma J, Saus E, Cuadros M, Reventos J, Sanchez de Toledo J, Gallego S (2007) Characterisation of novel splicing variants of the tyrosine hydroxylase C-terminal domain in human neuroblastic tumours. Biol Chem 388(4):419–426. doi:10.1515/BC.2007.041

    CAS  PubMed  Google Scholar 

  • Romano G, Suon S, Jin H, Donaldson AE, Iacovitti L (2005) Characterization of five evolutionary conserved regions of the human tyrosine hydroxylase (TH) promoter: implications for the engineering of a human TH minimal promoter assembled in a self-inactivating lentiviral vector system. J Cell Physiol 204(2):666–677. doi:10.1002/jcp.20319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romano G, Macaluso M, Lucchetti C, Iacovitti L (2007) Transcription and epigenetic profile of the promoter, first exon and first intron of the human tyrosine hydroxylase gene. J Cell Physiol 211(2):431–438. doi:10.1002/jcp.20949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143. doi:10.1016/j.phrs.2012.04.005

    CAS  PubMed  Google Scholar 

  • Roskoski R Jr, Ritchie P (1991) Phosphorylation of rat tyrosine hydroxylase and its model peptides in vitro by cyclic AMP-dependent protein kinase. J Neurochem 56(3):1019–1023

    CAS  PubMed  Google Scholar 

  • Roskoski R Jr, Roskoski LM (1987) Activation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger systems. J Neurochem 48(1):236–242

    CAS  PubMed  Google Scholar 

  • Roskoski R Jr, Vulliet PR, Glass DB (1987) Phosphorylation of tyrosine hydroxylase by cyclic GMP-dependent protein kinase. J Neurochem 48(3):840–845

    CAS  PubMed  Google Scholar 

  • Roskoski R Jr, Wilgus H, Vrana KE (1990) Inactivation of tyrosine hydroxylase by pterin substrates following phosphorylation by cyclic AMP-dependent protein kinase. Mol Pharmacol 38(4):541–546

    CAS  PubMed  Google Scholar 

  • Roskoski R Jr, Gahn LG, Roskoski LM (1993) Inactivation of phosphorylated rat tyrosine hydroxylase by ascorbate in vitro. Eur J Biochem 218(2):363–370

    CAS  PubMed  Google Scholar 

  • Royo M, Colette Daubner S (2006) Kinetics of regulatory serine variants of tyrosine hydroxylase with cyclic AMP-dependent protein kinase and extracellular signal-regulated protein kinase 2. Biochim Biophys Acta 1764(4):786–792. doi:10.1016/j.bbapap.2006.01.019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Royo M, Fitzpatrick PF, Daubner SC (2005) Mutation of regulatory serines of rat tyrosine hydroxylase to glutamate: effects on enzyme stability and activity. Arch Biochem Biophys 434(2):266–274. doi:10.1016/j.abb.2004.11.007

    CAS  PubMed  Google Scholar 

  • Sabban EL, Hebert MA, Liu X, Nankova B, Serova L (2004) Differential effects of stress on gene transcription factors in catecholaminergic systems. Ann N Y Acad Sci 1032:130–140. doi:10.1196/annals.1314.010

    CAS  PubMed  Google Scholar 

  • Sachs NA, Vaillancourt RR (2004) Cyclin-dependent kinase 11p110 and casein kinase 2 (CK2) inhibit the interaction between tyrosine hydroxylase and 14-3-3. J Neurochem 88(1):51–62

    CAS  PubMed  Google Scholar 

  • Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126(18):4017–4026

    CAS  PubMed  Google Scholar 

  • Salvatore MF, Garcia-Espana A, Goldstein M, Deutch AY, Haycock JW (2000) Stoichiometry of tyrosine hydroxylase phosphorylation in the nigrostriatal and mesolimbic systems in vivo: effects of acute haloperidol and related compounds. J Neurochem 75(1):225–232

    CAS  PubMed  Google Scholar 

  • Salvatore MF, Waymire JC, Haycock JW (2001) Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J Neurochem 79(2):349–360

    CAS  PubMed  Google Scholar 

  • Saraf A, Virshup DM, Strack S (2007) Differential expression of the B’beta regulatory subunit of protein phosphatase 2A modulates tyrosine hydroxylase phosphorylation and catecholamine synthesis. J Biol Chem 282(1):573–580. doi:10.1074/jbc.M607407200

    CAS  PubMed  Google Scholar 

  • Saraf A, Oberg EA, Strack S (2010) Molecular determinants for PP2A substrate specificity: charged residues mediate dephosphorylation of tyrosine hydroxylase by the PP2A/B’ regulatory subunit. Biochemistry 49(5):986–995. doi:10.1021/bi902160t

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh J, Kuroda Y (2002) The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines. Neuropathology 22(4):219–232

    PubMed  Google Scholar 

  • Schimmel JJ, Crews L, Roffler-Tarlov S, Chikaraishi DM (1999) 4.5 kb of the rat tyrosine hydroxylase 5′ flanking sequence directs tissue specific expression during development and contains consensus sites for multiple transcription factors. Brain Res Mol Brain Res 74(1–2):1–14

    CAS  PubMed  Google Scholar 

  • Schnell PO, Ignacak ML, Bauer AL, Striet JB, Paulding WR, Czyzyk-Krzeska MF (2003) Regulation of tyrosine hydroxylase promoter activity by the von Hippel–Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J Neurochem 85(2):483–491

    CAS  PubMed  Google Scholar 

  • Schworer CM, Soderling TR (1983) Substrate specificity of liver calmodulin-dependent glycogen synthase kinase. Biochem Biophys Res Commun 116(2):412–416

    CAS  PubMed  Google Scholar 

  • Segawa M (2011) Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev 33(3):195–201. doi:10.1016/j.braindev.2010.10.015

    PubMed  Google Scholar 

  • Segawa M, Nomura Y, Nishiyama N (2003) Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 54(Suppl 6):S32–S45. doi:10.1002/ana.10630

    CAS  PubMed  Google Scholar 

  • Seta KA, Millhorn DE (2004) Functional genomics approach to hypoxia signaling. J Appl Physiol 96(2):765–773. doi:10.1152/japplphysiol.00836.2003

    CAS  PubMed  Google Scholar 

  • Shi X, Habecker BA (2012) gp130 cytokines stimulate proteasomal degradation of tyrosine hydroxylase via extracellular signal regulated kinases 1 and 2. J Neurochem 120(2):239–247. doi:10.1111/j.1471-4159.2011.07539.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skjevik AA, Mileni M, Baumann A, Halskau O, Teigen K, Stevens RC, Martinez A (2014) The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes. J Mol Biol 426(1):150–168. doi:10.1016/j.jmb.2013.09.012

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stefano L, Al Sarraj J, Rossler OG, Vinson C, Thiel G (2006) Up-regulation of tyrosine hydroxylase gene transcription by tetradecanoylphorbol acetate is mediated by the transcription factors Ets-like protein-1 (Elk-1) and Egr-1. J Neurochem 97(1):92–104. doi:10.1111/j.1471-4159.2006.03749.x

    CAS  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55(6):659–665

    CAS  PubMed  Google Scholar 

  • Stott SR, Metzakopian E, Lin W, Kaestner KH, Hen R, Ang SL (2013) Foxa1 and foxa2 are required for the maintenance of dopaminergic properties in ventral midbrain neurons at late embryonic stages. J Neurosci 33(18):8022–8034. doi:10.1523/JNEUROSCI.4774-12.2013

    CAS  PubMed  Google Scholar 

  • Sumi M, Kiuchi K, Ishikawa T, Ishii A, Hagiwara M, Nagatsu T, Hidaka H (1991) The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res Commun 181(3):968–975

    CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Ichinose H, Ikemoto K, Nomura T, Kondo K (2010) Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: regulation of dopaminergic neural transmission by tyrosine hydroxylase protein at nerve terminals. J Pharmacol Sci 114(1):17–24

    CAS  PubMed  Google Scholar 

  • Sun B, Tank AW (2003) c-Fos is essential for the response of the tyrosine hydroxylase gene to depolarization or phorbol ester. J Neurochem 85(6):1421–1430

    CAS  PubMed  Google Scholar 

  • Sun B, Sterling CR, Tank AW (2003) Chronic nicotine treatment leads to sustained stimulation of tyrosine hydroxylase gene transcription rate in rat adrenal medulla. J Pharmacol Exp Ther 304(2):575–588. doi:10.1124/jpet.102.043596

    CAS  PubMed  Google Scholar 

  • Sun B, Chen X, Xu L, Sterling C, Tank AW (2004) Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: the role of transcriptional activation. Mol Pharmacol 66(4):1011–1021. doi:10.1124/mol.104.001974

    CAS  PubMed  Google Scholar 

  • Sura GR, Daubner SC, Fitzpatrick PF (2004) Effects of phosphorylation by protein kinase A on binding of catecholamines to the human tyrosine hydroxylase isoforms. J Neurochem 90(4):970–978. doi:10.1111/j.1471-4159.2004.02566.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sura GR, Lasagna M, Gawandi V, Reinhart GD, Fitzpatrick PF (2006) Effects of ligands on the mobility of an active-site loop in tyrosine hydroxylase as monitored by fluorescence anisotropy. Biochemistry 45(31):9632–9638. doi:10.1021/bi060754b

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutherland C, Alterio J, Campbell DG, Le Bourdelles B, Mallet J, Haavik J, Cohen P (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2. Eur J Biochem 217(2):715–722

    CAS  PubMed  Google Scholar 

  • Suzuki T, Yamakuni T, Hagiwara M, Ichinose H (2002) Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J Biol Chem 277(43):40768–40774. doi:10.1074/jbc.M206043200

    CAS  PubMed  Google Scholar 

  • Suzuki T, Kurahashi H, Ichinose H (2004) Ras/MEK pathway is required for NGF-induced expression of tyrosine hydroxylase gene. Biochem Biophys Res Commun 315(2):389–396. doi:10.1016/j.bbrc.2004.01.068

    CAS  PubMed  Google Scholar 

  • Tachikawa E, Tank AW, Weiner DH, Mosimann WF, Yanagihara N, Weiner N (1987) Tyrosine hydroxylase is activated and phosphorylated on different sites in rat pheochromocytoma PC12 cells treated with phorbol ester and forskolin. J Neurochem 48(5):1366–1376

    CAS  PubMed  Google Scholar 

  • Tan XF, Jin GH, Tian ML, Qin JB, Zhang L, Zhu HX, Li HM (2011) The co-transduction of Nurr1 and Brn4 genes induces the differentiation of neural stem cells into dopaminergic neurons. Cell Biol Int 35(12):1217–1223. doi:10.1042/CBI20110028

    CAS  PubMed  Google Scholar 

  • Tank AW, Xu L, Chen X, Radcliffe P, Sterling CR (2008) Post-transcriptional regulation of tyrosine hydroxylase expression in adrenal medulla and brain. Ann N Y Acad Sci 1148:238–248. doi:10.1196/annals.1410.054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tekin I, Vrana KE (2013) Caveat emptor: single nucleotide polymorphism reporting in pharmacogenomics. Pharmacology 92(5–6):319–323. doi:10.1159/000356324

    CAS  PubMed  Google Scholar 

  • Thomas G, Haavik J, Cohen P (1997) Participation of a stress-activated protein kinase cascade in the activation of tyrosine hydroxylase in chromaffin cells. Eur J Biochem 247(3):1180–1189

    CAS  PubMed  Google Scholar 

  • Thorolfsson M, Doskeland AP, Muga A, Martinez A (2002) The binding of tyrosine hydroxylase to negatively charged lipid bilayers involves the N-terminal region of the enzyme. FEBS Lett 519(1–3):221–226

    CAS  PubMed  Google Scholar 

  • Tinti C, Conti B, Cubells JF, Kim KS, Baker H, Joh TH (1996) Inducible cAMP early repressor can modulate tyrosine hydroxylase gene expression after stimulation of cAMP synthesis. J Biol Chem 271(41):25375–25381

    CAS  PubMed  Google Scholar 

  • Tinti C, Yang C, Seo H, Conti B, Kim C, Joh TH, Kim KS (1997) Structure/function relationship of the cAMP response element in tyrosine hydroxylase gene transcription. J Biol Chem 272(31):19158–19164

    CAS  PubMed  Google Scholar 

  • Toska K, Kleppe R, Armstrong CG, Morrice NA, Cohen P, Haavik J (2002a) Regulation of tyrosine hydroxylase by stress-activated protein kinases. J Neurochem 83(4):775–783

    CAS  PubMed  Google Scholar 

  • Toska K, Kleppe R, Cohen P, Haavik J (2002b) Phosphorylation of tyrosine hydroxylase in isolated mice adrenal glands. Ann N Y Acad Sci 971:66–68

    CAS  PubMed  Google Scholar 

  • Vrana KE, Roskoski R Jr (1983) Tyrosine hydroxylase inactivation following cAMP-dependent phosphorylation activation. J Neurochem 40(6):1692–1700

    CAS  PubMed  Google Scholar 

  • Vrana KE, Allhiser CL, Roskoski R Jr (1981) Tyrosine hydroxylase activation and inactivation by protein phosphorylation conditions. J Neurochem 36(1):92–100

    CAS  PubMed  Google Scholar 

  • Vrana KE, Walker SJ, Rucker P, Liu X (1994) A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation. J Neurochem 63(6):2014–2020

    CAS  PubMed  Google Scholar 

  • Vulliet PR, Langan TA, Weiner N (1980) Tyrosine hydroxylase: a substrate of cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 77(1):92–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vulliet PR, Woodgett JR, Cohen P (1984) Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. J Biol Chem 259(22):13680–13683

    CAS  PubMed  Google Scholar 

  • Vulliet PR, Woodgett JR, Ferrari S, Hardie DG (1985) Characterization of the sites phosphorylated on tyrosine hydroxylase by Ca2+ and phospholipid-dependent protein kinase, calmodulin-dependent multiprotein kinase and cyclic AMP-dependent protein kinase. FEBS Lett 182(2):335–339

    CAS  PubMed  Google Scholar 

  • Walker SJ, Liu X, Roskoski R, Vrana KE (1994) Catalytic core of rat tyrosine hydroxylase: terminal deletion analysis of bacterially expressed enzyme. Biochim Biophys Acta 1206(1):113–119

    CAS  PubMed  Google Scholar 

  • Wang J, Lou H, Pedersen CJ, Smith AD, Perez RG (2009) 14-3-3zeta contributes to tyrosine hydroxylase activity in MN9D cells: localization of dopamine regulatory proteins to mitochondria. J Biol Chem 284(21):14011–14019. doi:10.1074/jbc.M901310200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Lasagna M, Daubner SC, Reinhart GD, Fitzpatrick PF (2011) Fluorescence spectroscopy as a probe of the effect of phosphorylation at serine 40 of tyrosine hydroxylase on the conformation of its regulatory domain. Biochemistry 50(12):2364–2370. doi:10.1021/bi101844p

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waymire JC, Johnston JP, Hummer-Lickteig K, Lloyd A, Vigny A, Craviso GL (1988) Phosphorylation of bovine adrenal chromaffin cell tyrosine hydroxylase. Temporal correlation of acetylcholine’s effect on site phosphorylation, enzyme activation, and catecholamine synthesis. J Biol Chem 263(25):12439–12447

    CAS  PubMed  Google Scholar 

  • Wilgus H, Roskoski R Jr (1988) Inactivation of tyrosine hydroxylase activity by ascorbate in vitro and in rat PC12 cells. J Neurochem 51(4):1232–1239

    CAS  PubMed  Google Scholar 

  • Willemsen MA, Verbeek MM, Kamsteeg EJ, de Rijk-van Andel JF, Aeby A, Blau N, Burlina A, Donati MA, Geurtz B, Grattan-Smith PJ, Haeussler M, Hoffmann GF, Jung H, de Klerk JB, van der Knaap MS, Kok F, Leuzzi V, de Lonlay P, Megarbane A, Monaghan H, Renier WO, Rondot P, Ryan MM, Seeger J, Smeitink JA, Steenbergen-Spanjers GC, Wassmer E, Weschke B, Wijburg FA, Wilcken B, Zafeiriou DI, Wevers RA (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133(Pt 6):1810–1822. doi:10.1093/brain/awq087

    PubMed  Google Scholar 

  • Witkovsky P, Veisenberger E, Haycock JW, Akopian A, Garcia-Espana A, Meller E (2004) Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci 24(17):4242–4249. doi:10.1523/JNEUROSCI.5436-03.2004

    CAS  PubMed  Google Scholar 

  • Xu Y, Stokes AH, Roskoski R Jr, Vrana KE (1998a) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54(5):691–697

    CAS  PubMed  Google Scholar 

  • Xu ZQ, Lew JY, Harada K, Aman K, Goldstein M, Deutch A, Haycock JW, Hokfelt T (1998b) Immunohistochemical studies on phosphorylation of tyrosine hydroxylase in central catecholamine neurons using site- and phosphorylation state-specific antibodies. Neuroscience 82(3):727–738

    CAS  PubMed  Google Scholar 

  • Xu L, Sterling CR, Tank AW (2009) cAMP-mediated stimulation of tyrosine hydroxylase mRNA translation is mediated by polypyrimidine-rich sequences within its 3′-untranslated region and poly(C)-binding protein 2. Mol Pharmacol 76(4):872–883. doi:10.1124/mol.109.057596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi T, Fujisawa H (1979) In vitro phosphorylation of bovine adrenal tyrosine hydroxylase by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 254(2):503–507

    CAS  PubMed  Google Scholar 

  • Yamauchi T, Fujisawa H (1981) Tyrosine 3-monoxygenase is phosphorylated by Ca2+-, calmodulin-dependent protein kinase, followed by activation by activator protein. Biochem Biophys Res Commun 100(2):807–813

    CAS  PubMed  Google Scholar 

  • Yamauchi T, Nakata H, Fujisawa H (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization. J Biol Chem 256(11):5404–5409

    CAS  PubMed  Google Scholar 

  • Yang C, Kim HS, Seo H, Kim KS (1998) Identification and characterization of potential cis-regulatory elements governing transcriptional activation of the rat tyrosine hydroxylase gene. J Neurochem 71(4):1358–1368

    CAS  PubMed  Google Scholar 

  • Yohrling GJ IV, Jiang GC, Mockus SM, Vrana KE (2000) Intersubunit binding domains within tyrosine hydroxylase and tryptophan hydroxylase. J Neurosci Res 61(3):313–320

  • Yu HS, Kim SH, Park HG, Kim YS, Ahn YM (2011) Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates tyrosine hydroxylase through extracellular signal-regulated kinase in rat striatum. Neurochem Int 59(6):779–786. doi:10.1016/j.neuint.2011.08.011

    CAS  PubMed  Google Scholar 

  • Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    CAS  PubMed  Google Scholar 

  • Zhang D, Kanthasamy A, Yang Y, Anantharam V, Kanthasamy A (2007) Protein kinase C delta negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. J Neurosci 27(20):5349–5362. doi:10.1523/JNEUROSCI.4107-06.2007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Huang T, Ilangovan U, Hinck AP, Fitzpatrick PF (2014) The solution structure of the regulatory domain of tyrosine hydroxylase. J Mol Biol 426(7):1483–1497. doi:10.1016/j.jmb.2013.12.015

    CAS  PubMed  Google Scholar 

  • Zhou QY, Quaife CJ, Palmiter RD (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374(6523):640–643. doi:10.1038/374640a0

    CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang J, Zeng Y (2012) Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 11(4):350–358

    CAS  PubMed  Google Scholar 

  • Zigmond RE (1998) Regulation of tyrosine hydroxylase by neuropeptides. Adv Pharmacol 42:21–25

    CAS  PubMed  Google Scholar 

  • Zigmond RE, Schwarzschild MA, Rittenhouse AR (1989) Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu Rev Neurosci 12:415–461. doi:10.1146/annurev.ne.12.030189.002215

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (GM38931) and the Penn State Institute for Personalized Medicine (04-017-52 HY 8A1HO; under a grant from the Pennsylvania Department of Health using Tobacco CURE Funds). The PA Department of Health specifically disclaims responsibility for any analyses, interpretations or conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent E. Vrana.

Additional information

I. Tekin and R. Roskoski Jr. have contributed equally to preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, I., Roskoski, R., Carkaci-Salli, N. et al. Complex molecular regulation of tyrosine hydroxylase. J Neural Transm 121, 1451–1481 (2014). https://doi.org/10.1007/s00702-014-1238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1238-7

Keywords

Navigation