Skip to main content
Log in

Running wheel activity restores MPTP-induced functional deficits

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Wheel-running and treadmill running physical exercise have been shown to alleviate parkinsonism in both laboratory and clinical studies. MPTP was administered to C57/BL6 mice using two different procedures: (a) administration of a double-dose regime (MPTP 2 × 20 or 2 × 40 mg/kg, separated by a 24-h interval), vehicle (saline 5 ml/kg) or saline (vehicle 2 × 5 ml/kg), and (b) administration of a single-dose weekly regime (MPTP 1 × 40 mg/kg) or saline (vehicle 1 × 5 ml/kg) repeated over 4 consecutive weeks. For each procedure, two different physical exercise regimes were followed: (a) after the double-dose MPTP regime, mice were given daily 30-min periods of wheel-running exercise over 5 consecutive days/week or placed in a cage in close proximity to the running wheels for 3 weeks. (b) Mice were either given wheel-running activity on 4 consecutive days (30-min periods) or placed in a cage nearby for 14 weeks. Behavioral testing was as follows: (a) after 3 weeks of exercise/no exercise, mice were tested for spontaneous motor activity (60 min) and subthreshold l-Dopa (5 mg/kg)-induced activity. (b) Spontaneous motor activity was measured on the fifth day during each of the each of the first 5 weeks (Tests 1–5), about 1 h before injections (first 4 weeks), and continued on the 5th days of the 6th to the 14th weeks (Tests 6–14). Subthreshold l-Dopa (5 mg/kg)-induced activity was tested on the 6th, 8th, 10th, 12th and 14th weeks. (b) Mice from the single-dose MPTP weekly regime were killed during the 15th week and striatal regions taken for dopamine analysis, whereas frontal and parietal cortex and hippocampus were taken for analysis of brain-derived neurotrophic factor (BDNF). It was shown that in both experiments, i.e., the double-dose regime and single-dose weekly regime of MPTP administration, physical activity attenuated markedly the MPTP-induced akinesia/hypokinesia in both the spontaneous motor activity and restored motor activity completely in subthreshold l-Dopa tests. Running wheel activity attenuated markedly the loss of dopamine due to repeated administrations of MPTP. BDNF protein level in the parietal cortex was elevated by the MPTP insult and increased further by physical exercise. Physical running wheel exercise alleviated both the functional and biomarker expressions of MPTP-induced parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adkins DL, Boychuk J, Remple MS, Kleim JA (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 101:1776–1782

    Article  PubMed  Google Scholar 

  • Archer T (2010) Physical exercise alleviates debilities of normal aging and Alzheimer’s diasease. Acta Neurologica Scand (in press)

  • Archer T, Fredriksson A (2003) An antihypokinesic action of α2-adrenoceptors upon MPTP-induced behavior deficits in mice. J Neural Transm 110:183–200

    Article  PubMed  CAS  Google Scholar 

  • Archer T, Fredriksson A (2006) Influence of noradrenaline denervation upon MPTP-induced deficts in mice. J Neural Transm 113:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Archer T, Fredriksson A (2007) Functional consequences of iron overload in catecholaminergic interactions. Neurochem Res 32:1625–1639

    Article  PubMed  CAS  Google Scholar 

  • Archer T, Fredriksson A (2010) Physical exercise attenuates MPTP-induced deficits in mice. Neurotox Res (in press)

  • Archer T, Fredriksson A, Jonsson G, Lewander T, Mohammed AK, Ross SB, Söderberg U (1986) Central noradrenaline depletion antagonises aspects of d-amphetamine-induced hyperactivity in the rat. Psychopharmacology 88:141–146

    Google Scholar 

  • Archer T, Fredriksson A, Schϋtz E, Kostrzewa RM (2010a) Influence of physical exercise on neuroimmune functioning and health: aging and stress. Neurotoxicity Res (submitted)

  • Archer T, Johansson B, Fredriksson A (2010b) Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurologica Scand (in press)

  • Bilowit DS (1956) Establishing physical objectives in rehabilitation of patients with Parkinson’s disease. Phys Therapy Rev 36:176–178

    CAS  Google Scholar 

  • Björk L, Lindgren S, Hacksell U, Lewander T (1991) (S)-UH-301 antagonizes (R)-8-OH-DPAT-induced cardiovascular effects in the rat. Eur J Pharmacol 199:367–370

    Google Scholar 

  • Boulanger L, Poo MM (1999) Gating of BDNF-induced synaptic potentiation by cAMP. Science 284:1982–1984

    Google Scholar 

  • Cohen AD, Tillerson JL, Smith AD, Schallert T, Zigmond MJ (2003) Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. J Neurochem 85:299–305

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Berchtold NC (2002) Exercise: a behavioural intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  PubMed  CAS  Google Scholar 

  • Cui Q (2006) Actions of neurotrophic factors and their signalling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 33:155–179

    Article  PubMed  Google Scholar 

  • Döbrössy MD, Dunnett SB (2001) The influence of environment and experience on neural grafts. Nat Rev Neurosci 2:871–879

    Article  PubMed  Google Scholar 

  • Döbrössy MD, Dunnett SB (2003) Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp Neurol 184:274–284

    Article  PubMed  Google Scholar 

  • Döbrössy MD, Dunnett SB (2006) Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. Eur J Neurosci 24:3223–3233

    Article  PubMed  Google Scholar 

  • Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77:378–390

    Article  PubMed  CAS  Google Scholar 

  • Fox CM, Ramig LO, Ciucci MR, Sapir S, McFarland DH, Farley BG (2006) The science and practice of LSVT/LOUD: neural plasticity approach to treating individuals with Parkinson’s disease and other neurological disorders. Semin Speech Lang 27:283–299

    Article  PubMed  Google Scholar 

  • Fredriksson A, Archer T (1994) MPTP-induced behavioural and biochemical deficits: a parametric analysis. J Neural Transm Park Dis Dement Sect 7:123–132

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Archer T (2003) Effect of postnatal iron administration on MPTP-induced behavioural deficits and neurotoxicity: behavioural enhancement by l-Dopa-MK-801 co-administration. Behav Brain Res 139:31–46

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Archer T (2007) Postnatal iron overload destroys NA-DA functional interactions. J Neural Transm 114:195–203

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Plaznik A, Sundström E, Jonsson G, Archer T (1990) MPTP-induced hypoactivity in mice: reversal by l-Dopa. Pharmacol Toxicol 67:295–301

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Palomo T, Chase TN, Archer T (1999) Tolerance to a suprathreshold dose of l-Dopa in MPTP mice: effects of glutamate antagonists. J Neural Transm 106:283–300

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2001) Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits. Parkinsonism Relat Dis 7:97–105

    Article  Google Scholar 

  • Fuss J, Ben Abdallah NM, Vogt MA, Touma C, Pacifici PG, Palme R, Witzemann V, Hellweg R, Gass P (2010) Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus 20:364–376

    Google Scholar 

  • Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL (2008) The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Movement Dis 23:631–640

    Article  PubMed  Google Scholar 

  • Greisbach GS, Hovda DA, Gomez-Pinilla F, Sutton RL (2008) Voluntary exercise or amphetamine treatment, but not the combination, increases hippocampal brain-derived neurotrophic factor and synapsin-1 following cortical contusion injury in rats. Neuroscience 154:530–540

    Article  Google Scholar 

  • Heikkila RE, Sieber B-A, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrohydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10:171–183

    Article  PubMed  CAS  Google Scholar 

  • Howells FM, Russell VA, Mabandla MV, Kellaway LA (2006) Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson’s disease. Behav Brain Res 165:210–220

    Article  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, Gluckman PD (1999) Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 57:421–450

    Google Scholar 

  • Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR, Duman RS (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476–1482

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz A (1989) The benefit of a home exercise regime for ambulatory Parkinson’s disease patients. J Neurosci Nurs 21:180–184

    Article  PubMed  CAS  Google Scholar 

  • Imamura F, Greer CA (2009) Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB. PLoS One. 4:e6729

  • Johnson RA, Rhodes JS, Jeffrey SL, Garland T Jr, Mitchell GS (2003) Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running. Neuroscience 121:1–7

    Article  PubMed  Google Scholar 

  • Kirk R (1995) Experimental design: procedures for the behavioral sciences. Brooks/Cole, Belmont, Calif

    Google Scholar 

  • Kurz MJ, Pothakos K, Jamaluddon S, Scott-Pandorf M, Arellano C, Lau Y-S (2007) A chronic mouse model of Parkinson’s disease has a reduced gait pattern certainty. Neurosci Lett 429:39–42

    Article  PubMed  CAS  Google Scholar 

  • Langston JW (1985) MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci 36:201–206

    Article  PubMed  CAS  Google Scholar 

  • Laske C, Banschbach S, Stransky E, Bosch S, Straten G, Machann J, Fritsche A, Hipp A, Niess A, Eschweiler GW (2010) Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. Int J Neuropsychopharmacol 13:1–8

    Article  Google Scholar 

  • Li Y, Ji YJ, Jiang H, Liu DX, Zhang Q, Fan SJ, Pan F (2009) Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats. Chin Med J (Engl) 122:1564–1569

    CAS  Google Scholar 

  • Liu Y, Yu H, Mohell N, Nordvall G, Lewander T and Hacksell U (1995) Derivatives of cis-2-amino-8-hydroxy-1-methyltetralin: mixed 5-HT1A-receptor agonists and dopamine D2-receptor antagonists. J Med Chem 38:150–160

    Google Scholar 

  • Liu X, Robinson ML, Schreiber AM, Wu V, Lavail MM, Cang J, Copenhagen DR (2009) Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression. J Comp Neurol 514(5):449–458

    Article  PubMed  CAS  Google Scholar 

  • Mabandla MV, Dobson B, Johnson S, Kellaway LA, Daniels WM, Russell VA (2008) Development of a mild prenatal stress rat model to study long term effects on neural function and survival. Metab Brain Dis 23:31–42

    Article  PubMed  Google Scholar 

  • Mabandla MV, Kellaway LA, Daniels WM, Russell VA (2009) Effect of exercise on dopamine neuron survival in prenatally stressed rats. Metab Brain Dis 24:525–539

    Article  PubMed  CAS  Google Scholar 

  • Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, Czarkowska-Bauch J (2009) Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci 10:144

    Article  PubMed  Google Scholar 

  • Marais L, Van Rensburg SJ, Van Zyl JM, Stein DJ, Daniels WM (2008) Maternal separation of rat pups increases the risk of developing depressive-like behavior after consequent chronic stress by altering corticosterone and neurophin levels in the hippocampus. Neurosci Res 61:106–112

    Article  PubMed  CAS  Google Scholar 

  • Marais L, Stein DJ, Daniels WM (2009) Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis 24:587–597

    Article  PubMed  CAS  Google Scholar 

  • Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 18:247–258

    Article  PubMed  Google Scholar 

  • Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S, Nemoto T, Fukata M, Poo MM (2009) Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 29(45):14185–14198

    Article  PubMed  CAS  Google Scholar 

  • McFadyen-Leussis MP, Lewis SP, Bond TLY, Carrey N, Brown RE (2004) Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacol Biochem Behav 77:491–500

    Article  PubMed  CAS  Google Scholar 

  • Menna E, Disanza A, Cagnoli C, Schenk U, Gelsomino G, Frittoli E, Hertzog M, Offenhauser N, Sawallisch C, Kreienkamp HJ, Gertler FB, Di Fiore PP, Scita G, Matteoli M (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol. 7: e1000138

  • Mishra A, Knerr B, Paixão S, Kramer ER, Klein R (2008) The protein dendrite arborization and synapse maturation 1 (Dasm-1) is dispensable for dendrite arborization. Mol Cell Biol 28:2782–2791

    Article  PubMed  CAS  Google Scholar 

  • Morishima M, Harada N, Hara S, Sano A, Seno H, Takahashi A, Marita Y, Nakaya Y (2006) Monoamine oxidase A activity and norepinephrine level in hippocampus determine hyperwheel running in SPORTS rats. Neuropsychpharmacology 31:2627–2638

    Article  CAS  Google Scholar 

  • Morris M, Schoo A (2004) Optimizing exercise and physical activity in older adults. Butterworth Heinemann, Edinburgh

    Google Scholar 

  • Muhlack S, Welnic J, Woitalla D, Müller T (2007) Exercise improves efficacy of levodopa in patients with Parkinson’s disease. Movement Dis 22:427–430

    Article  PubMed  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996a) Exercise and brain neurotrophins. Nature 373:109

    Article  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996b) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–1794

    Article  PubMed  CAS  Google Scholar 

  • Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunagi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258

    PubMed  CAS  Google Scholar 

  • O’Dell SJ, Gross NB, Fricks AN, Casiano BD, Nguyen TB, Marshall JF (2007) Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 144:1141–1151

    Article  PubMed  Google Scholar 

  • Oliff HS, Berchtold NC, Isackson P, Cotman CW (1998) Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res 61:147–153

    Article  PubMed  CAS  Google Scholar 

  • Palmer SS, Mortimer JA, Webster DD, Bistevins R, Dickinson GL (1986) Exercise therapy for Parkinson’s disease. Arch Phys Med Rehab 67:741–745

    Article  CAS  Google Scholar 

  • Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27: 5291-5230

    Google Scholar 

  • Pohl M, Rockstroh G, Ruckreim S, Mrass G, Mehrholz J (2003) Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Arch Phys Med Rehabil 84:1760–1766

    Article  PubMed  Google Scholar 

  • Post (2010) Mechanisms of illness progression in the recurrent affective disorders. Neurotox Res (in press)

  • Sallert M, Rantamäki T, Vesikansa A, Anthoni H, Harju K, Yli-Kauhaluoma J, Taira T, Castren E, Lauri SE (2009) Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors. J Neurosci 29(36):11294–11303

    Article  PubMed  CAS  Google Scholar 

  • Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298(2):R372–R377

    Article  PubMed  CAS  Google Scholar 

  • Shallert T (2006) Behavioural tests for preclinical intervention assessment. NeuroRx 3:497–504

    Article  Google Scholar 

  • Smith AD, Zigmond MJ (2003) Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol 184:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345

    Article  PubMed  CAS  Google Scholar 

  • Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS, Nishijima T (2007) BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun 358:961–967

    Article  PubMed  CAS  Google Scholar 

  • Stranahan AM, Zhou Y, Martin B, Maudsley S (2009) Pharmacomimetics of exercise: novel approaches for hippocampally-targeted neuroprotective agents. Curr Med Chem 16(35):4668–4678

    Article  PubMed  CAS  Google Scholar 

  • Sundström E, Fredriksson A, Archer T (1990) Chronic neurochemical and behavioural changes in MPTP-lesioned C57 BL/6 mice: a model for Parkinson’s disease. Brain Res 528:181–188

    Article  PubMed  Google Scholar 

  • Sylvia LG, Ametrano RM, Nierenberg AA (2010) Exercise treatment for bipolar disorder: potential mechanisms of action mediated through increased neurogenesis and decreased allostatic load. Psychother Psychosom 79(2):87–96

    Article  PubMed  Google Scholar 

  • Takahashi M, Hayashi S, Kakita A, Wakabayashi K, Fukuda M, Kameyama S, Tanaka R, Takahashi H, Nawa H (1999) Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res 818(2):579–582

    Article  PubMed  CAS  Google Scholar 

  • Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y (2009) Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 18:787–798

    Google Scholar 

  • Tillerson JL, Cohen AD, Philpower J, Miller GW, Zigmond MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21:4427–4435

    PubMed  CAS  Google Scholar 

  • Tillerson JL, Cohen AD, Philpower J, Miller GW, Zigmond MJ, Schallert T (2002) Forced nonuse in unilateral Parkinsonian rats exacerbates injury. J Neurosci 22:6790–6799

    PubMed  CAS  Google Scholar 

  • Toole T, Maitland CG, Warren E, Hubmann MF, Panton L (2005) The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation 20:307–322

    PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between BDNF and signal transductional modulators in the regulation of the effects of exercise on synaltic plasticity. Neuroscience 122:647–657

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S, Ying Z, Gómez-Pinilla F (2004) Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 76:356–362

    Article  PubMed  CAS  Google Scholar 

  • Viberg H, Mundy W, Eriksson P (2008) Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159

    Article  PubMed  CAS  Google Scholar 

  • Waters RP, Renner KJ, Pringle RB, Summers CH, Britton SL, Koch LG, Swallow JG (2008) Selection for aerobic capacity affects corticosterone, monoamines and wheel-running activity. Physiol Behav 18:1044–1054

    Article  Google Scholar 

  • Yacobian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349

    Article  Google Scholar 

  • Zhou XP, Wu KY, Liang B, Fu XQ, Luo ZG (2008) TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci USA 105(44):17181–17186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer.

Additional information

This manuscript is dedicated to the special issue on the HAIFA meeting 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredriksson, A., Stigsdotter, I.M., Hurtig, A. et al. Running wheel activity restores MPTP-induced functional deficits. J Neural Transm 118, 407–420 (2011). https://doi.org/10.1007/s00702-010-0474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0474-8

Keywords

Navigation