Skip to main content
Log in

Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia

  • Clinical Article - Functional
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Dystonia has been treated well using deep brain stimulation at the globus pallidus internus (GPi DBS). Dystonia can be categorized as two basic types of movement, phasic-type and tonic-type. Cervical dystonia is the most common type of focal dystonia, and sequential differences in clinical outcomes between phasic-type and tonic-type cervical dystonia have not been reported.

Methods

This study included a retrospective cohort of 30 patients with primary cervical dystonia who underwent GPi DBS. Age, disease duration, dystonia direction, movement types, employment status, relevant life events, and neuropsychological examinations were analyzed with respect to clinical outcomes following GPi DBS.

Results

The only significant factor affecting clinical outcomes was movement type (phasic or tonic). Sequential changes in clinical outcomes showed significant differences between phasic- and tonic-type cervical dystonia. A delayed benefit was found in both phasic- and tonic-type dystonia.

Conclusions

The clinical outcome of phasic-type cervical dystonia is more favorable than that of tonic-type cervical dystonia following GPi DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Argyelan M, Carbon M, Niethammer M, Ulug AM, Voss HU, Bressman SB, Dhawan V, Eidelberg D (2009) Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci 29:9740–9747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Barow E, Neumann WJ, Brucke C, Huebl J, Horn A, Brown P, Krauss JK, Schneider GH, Kuhn AA (2014) Deep brain stimulation suppresses pallidal low-frequency activity in patients with phasic dystonic movements. Brain 137:3012–3024

    Article  PubMed  Google Scholar 

  3. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038

    CAS  PubMed  Google Scholar 

  4. Byl NN, Merzenich MM, Jenkins WM (1996) A primate genesis model of focal dystonia and repetitive strain injury: I learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 47:508–520

    Article  CAS  PubMed  Google Scholar 

  5. Chiken S, Nambu A (2014) Disrupting neuronal transmission: mechanism of DBS? Front Syst Neurosci 8:33

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chung M, Han I, Chung SS, Jang DK, Huh R (2015) Effectiveness of selective peripheral denervation in combination with pallidal deep brain stimulation for the treatment of cervical dystonia. Acta Neurochir (Wien) 157:435–442

    Article  Google Scholar 

  7. Comella C, Bhatia K (2015) An international survey of patients with cervical dystonia. J Neurol 262:837–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A 110:4780–4785

    Article  PubMed Central  PubMed  Google Scholar 

  9. Eltahawy HA, Saint-Cyr J, Poon YY, Moro E, Lang AE, Lozano AM (2004) Pallidal deep brain stimulation in cervical dystonia: clinical outcome in four cases. Can J Neurol Sci 31:328–332

    Article  CAS  PubMed  Google Scholar 

  10. Frucht SJ (2014) “Closing the loop” in cervical dystonia: a new clinical phenomenon. Tremor Other Hyperkinet Mov (N Y) 4

  11. Grips E, Blahak C, Capelle HH, Bazner H, Weigel R, Sedlaczek O, Krauss JK, Wohrle JC (2007) Patterns of reoccurrence of segmental dystonia after discontinuation of deep brain stimulation. J Neurol Neurosurg Psychiatry 78:318–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hamani C, Moro E, Zadikoff C, Poon YY, Lozano AM (2008) Location of active contacts in patients with primary dystonia treated with globus pallidus deep brain stimulation. Neurosurgery 62:217–225

    Article  PubMed  Google Scholar 

  13. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    CAS  PubMed  Google Scholar 

  14. Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Ozkurt TE, Elben S, Vesper J, Wojtecki L, Schnitzler A (2013) A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain 136:3659–3670

    Article  PubMed  Google Scholar 

  15. Huh R, Han IB, Chung M, Chung S (2010) Comparison of treatment results between selective peripheral denervation and deep brain stimulation in patients with cervical dystonia. Stereotact Funct Neurosurg 88:234–238

    Article  PubMed  Google Scholar 

  16. Hung SW, Hamani C, Lozano AM, Poon YY, Piboolnurak P, Miyasaki JM, Lang AE, Dostrovsky JO, Hutchison WD, Moro E (2007) Long-term outcome of bilateral pallidal deep brain stimulation for primary cervical dystonia. Neurology 68:457–459

    Article  CAS  PubMed  Google Scholar 

  17. Isaias IU, Volkmann J, Kupsch A, Burgunder JM, Ostrem JL, Alterman RL, Mehdorn HM, Schonecker T, Krauss JK, Starr P, Reese R, Kuhn AA, Schupbach WM, Tagliati M (2011) Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration. J Neurol 258:1469–1476

    Article  PubMed  Google Scholar 

  18. Jankovic J (2009) Treatment of hyperkinetic movement disorders. Lancet Neurol 8:844–856

    Article  CAS  PubMed  Google Scholar 

  19. Jankovic J, Tsui J, Bergeron C (2007) Prevalence of cervical dystonia and spasmodic torticollis in the United States general population. Parkinsonism Relat Disord 13:411–416

    Article  CAS  PubMed  Google Scholar 

  20. Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5:294–308

    Article  PubMed Central  PubMed  Google Scholar 

  21. Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA (2013) Deep brain stimulation: a mechanistic and clinical update. Neurosurg Focus 35, E1

    Article  PubMed  Google Scholar 

  22. Kiss ZH, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A, Suchowersky O (2007) The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain 130:2879–2886

    Article  PubMed  Google Scholar 

  23. Koch G, Porcacchia P, Ponzo V, Carrillo F, Caceres-Redondo MT, Brusa L, Desiato MT, Arciprete F, Di Lorenzo F, Pisani A, Caltagirone C, Palomar FJ, Mir P (2014) Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul 7:564–572

    Article  PubMed  Google Scholar 

  24. Krauss JK (2010) Surgical treatment of dystonia. Eur J Neurol 17(Suppl 1):97–101

    Article  PubMed  Google Scholar 

  25. Krauss JK, Yianni J, Loher TJ, Aziz TZ (2004) Deep brain stimulation for dystonia. J Clin Neurophysiol 21:18–30

    Article  PubMed  Google Scholar 

  26. Kupsch A, Benecke R, Muller J, Trottenberg T, Schneider GH, Poewe W, Eisner W, Wolters A, Muller JU, Deuschl G, Pinsker MO, Skogseid IM, Roeste GK, Vollmer-Haase J, Brentrup A, Krause M, Tronnier V, Schnitzler A, Voges J, Nikkhah G, Vesper J, Naumann M, Volkmann J (2006) Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 355:1978–1990

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Qian ZM, Arbuthnott GW, Ke Y, Yung WH (2014) Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. JAMA Neurol 71:100–103

    Article  PubMed  Google Scholar 

  28. Liu X, Griffin IC, Parkin SG, Miall RC, Rowe JG, Gregory RP, Scott RB, Aziz TZ, Stein JF (2002) Involvement of the medial pallidum in focal myoclonic dystonia: a clinical and neurophysiological case study. Mov Disord 17:346–353

    Article  PubMed  Google Scholar 

  29. Liu X, Wang S, Yianni J, Nandi D, Bain PG, Gregory R, Stein JF, Aziz TZ (2008) The sensory and motor representation of synchronized oscillations in the globus pallidus in patients with primary dystonia. Brain 131:1562–1573

    Article  PubMed  Google Scholar 

  30. Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70:163–171

    Article  PubMed  Google Scholar 

  31. Moro E, Piboolnurak P, Arenovich T, Hung SW, Poon YY, Lozano AM (2009) Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur J Neurol 16:506–512

    Article  CAS  PubMed  Google Scholar 

  32. Munts AG, Koehler PJ (2010) How psychogenic is dystonia? views from past to present. Brain 133:1552–1564

    Article  PubMed  Google Scholar 

  33. Murrow RW (2014) Penfield’s prediction: a mechanism for deep brain stimulation. Front Neurol 5:213

    Article  PubMed Central  PubMed  Google Scholar 

  34. Perlmutter JS, Mink JW, Bastian AJ, Zackowski K, Hershey T, Miyawaki E, Koller W, Videen TO (2002) Blood flow responses to deep brain stimulation of thalamus. Neurology 58:1388–1394

    Article  CAS  PubMed  Google Scholar 

  35. Quartarone A, Hallett M (2013) Emerging concepts in the physiological basis of dystonia. Mov Disord 28:958–967

    Article  PubMed Central  PubMed  Google Scholar 

  36. Quartarone A, Pisani A (2011) Abnormal plasticity in dystonia: disruption of synaptic homeostasis. Neurobiol Dis 42:162–170

    Article  PubMed  Google Scholar 

  37. Richardson SP (2015) Enhanced dorsal premotor-motor inhibition in cervical dystonia. Clin Neurophysiol 126:1387–1391

    Article  Google Scholar 

  38. Sadnicka A, Kimmich O, Pisarek C, Ruge D, Galea J, Kassavetis P, Parees I, Saifee T, Molloy A, Bradley D, O’Riordan S, Zrinzo L, Hariz M, Bhatia KP, Limousin P, Foltynie T, Rothwell JC, Hutchinson M, Edwards MJ (2013) Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. Mov Disord 28:1874–1877

    Article  PubMed  Google Scholar 

  39. Sako W, Morigaki R, Mizobuchi Y, Tsuzuki T, Ima H, Ushio Y, Nagahiro S, Kaji R, Goto S (2011) Bilateral pallidal deep brain stimulation in primary Meige syndrome. Parkinsonism Relat Disord 17:123–125

    Article  PubMed  Google Scholar 

  40. Shaikh AG, Mewes K, Jinnah HA, DeLong MR, Gross RE, Triche S, Freeman A, Factor SA (2014) Globus pallidus deep brain stimulation for adult-onset axial dystonia. Parkinsonism Relat Disord 20:1279–1282

    Article  PubMed  Google Scholar 

  41. Sharott A, Grosse P, Kuhn AA, Salih F, Engel AK, Kupsch A, Schneider GH, Krauss JK, Brown P (2008) Is the synchronization between pallidal and muscle activity in primary dystonia due to peripheral afferance or a motor drive? Brain 131:473–484

    Article  PubMed  Google Scholar 

  42. Shimamoto SA, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Miller KJ, Starr PA (2013) Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease. J Neurosci 33:7220–7233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P (2003) Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 126:2597–2608

    Article  PubMed  Google Scholar 

  44. Svetel M, Pekmezovic T, Jovic J, Ivanovic N, Dragasevic N, Maric J, Kostic VS (2007) Spread of primary dystonia in relation to initially affected region. J Neurol 254:879–883

    Article  PubMed  Google Scholar 

  45. Svetel M, Pekmezovic T, Tomic A, Kresojevic N, Kostic VS (2015) The spread of primary late-onset focal dystonia in a long-term follow-up study. Clin Neurol Neurosurg 132:41–43

    Article  PubMed  Google Scholar 

  46. Tolleson C, Pallavaram S, Li C, Fang J, Phibbs F, Konrad P, Hedera P, D’Haese PF, Dawant BM, Davis TL (2015) The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration. Stereotact Funct Neurosurg 93:17–24

    Article  PubMed  Google Scholar 

  47. Vidailhet M, Grabli D, Roze E (2009) Pathophysiology of dystonia. Curr Opin Neurol 22:406–413

    Article  CAS  PubMed  Google Scholar 

  48. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, Lagrange C, Tezenas du Montcel S, Dormont D, Grand S, Blond S, Detante O, Pillon B, Ardouin C, Agid Y, Destee A, Pollak P (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352:459–467

    Article  CAS  PubMed  Google Scholar 

  49. Volkmann J, Mueller J, Deuschl G, Kuhn AA, Krauss JK, Poewe W, Timmermann L, Falk D, Kupsch A, Kivi A, Schneider GH, Schnitzler A, Sudmeyer M, Voges J, Wolters A, Wittstock M, Muller JU, Hering S, Eisner W, Vesper J, Prokop T, Pinsker M, Schrader C, Kloss M, Kiening K, Boetzel K, Mehrkens J, Skogseid IM, Ramm-Pettersen J, Kemmler G, Bhatia KP, Vitek JL, Benecke R (2014) Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol 13:875–884

    Article  PubMed  Google Scholar 

  50. Walsh RA, Sidiropoulos C, Lozano AM, Hodaie M, Poon YY, Fallis M, Moro E (2013) Bilateral pallidal stimulation in cervical dystonia: blinded evidence of benefit beyond 5 years. Brain 136:761–769

    Article  PubMed  Google Scholar 

  51. Weinberger M, Hutchison WD, Alavi M, Hodaie M, Lozano AM, Moro E, Dostrovsky JO (2012) Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 123:358–368

    Article  PubMed  Google Scholar 

  52. Witt JL, Moro E, Ash RS, Hamani C, Starr PA, Lozano AM, Hodaie M, Poon YY, Markun LC, Ostrem JL (2013) Predictive factors of outcome in primary cervical dystonia following pallidal deep brain stimulation. Mov Disord 28:1451–1455

    Article  PubMed  Google Scholar 

  53. Yianni J, Bain PG, Gregory RP, Nandi D, Joint C, Scott RB, Stein JF, Aziz TZ (2003) Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol 10:239–247

    Article  CAS  PubMed  Google Scholar 

  54. Yianni J, Wang SY, Liu X, Bain PG, Nandi D, Gregory R, Joint C, Stein JF, Aziz TZ (2006) A dominant bursting electromyograph pattern in dystonic conditions predicts an early response to pallidal stimulation. J Clin Neurosci 13:738–746

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoong Huh.

Ethics declarations

Financial disclosures

Moonyoung Chung has no financial disclosure.

Ryoong Huh has no financial disclosure.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Comments

In this interesting study, the authors retrospectively review the clinical data of 30 patients affected by primary cervical dystonia who underwent globus pallidus internus (GPi) deep brain stimulation (DBS). This study provides some important information on this topic. The only significant factor affecting clinical outcomes was the dystonia type (phasic or tonic). A benefit was actually found for both types of cervical dystonia, but the clinical outcome of phasic-type cervical dystonia is more favorable. Intriguingly, a delayed benefit was found in both phasic- and tonic-type dystonia. This study has the merit of being conducted in a large and homogenous patient group and to demonstrate the persistence of benefit and even a delayed improvement in both dystonia types. Furthermore, it provides interesting considerations about the mechanisms underlying DBS neuromodulation. It has been suggested that DBS causes a “depolarization block” by high-frequency stimulation of neurons above their maximum firing rate inducing continuous depolarization and conduction block. Nevertheless, this interpretation does not appear completely satisfactory. Indeed, several stimulation-induced side effects, such as visual flushing, tetanic muscle contraction, and paresthesia, seemingly originates from neural activations rather than from neural block. Other possible explanations should therefore be considered. For instance, the effects of DBS on phasic-types dystonia could be the result of desynchronization of a pathologic low-frequency oscillatory activity of the central motor network. Furthermore, the distinctive feature of a delayed benefit of GPi DBS in dystonia patients suggests that this procedure can modulate neural plasticity in a manner that deserves further studies.

Alfredo Conti

Messina, Italy

Some of data of this study have been presented in 55th congress of Korean Society of Neurosurgeon at Oct. 17, 2015.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, M., Huh, R. Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir 158, 171–180 (2016). https://doi.org/10.1007/s00701-015-2646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-015-2646-7

Keywords

Navigation