Skip to main content
Log in

Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

In many patients, optimal results after pallidal deep brain stimulation (DBS) for primary dystonia may appear over several months, possibly beyond 1 year after implant. In order to elucidate the factors predicting such protracted clinical effect, we retrospectively reviewed the clinical records of 44 patients with primary dystonia and bilateral pallidal DBS implants. Patients with fixed skeletal deformities, as well as those with a history of prior ablative procedures, were excluded. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores at baseline, 1 and 3 years after DBS were used to evaluate clinical outcome. All subjects showed a significant improvement after DBS implants (mean BFMDRS improvement of 74.9% at 1 year and 82.6% at 3 years). Disease duration (DD, median 15 years, range 2–42) and age at surgery (AS, median 31 years, range 10–59) showed a significant negative correlation with DBS outcome at 1 and 3 years. A partition analysis, using DD and AS, clustered subjects into three groups: (1) younger subjects with shorter DD (n = 19, AS < 27, DD ≤ 17); (2) older subjects with shorter DD (n = 8, DD ≤ 17, AS ≥ 27); (3) older subjects with longer DD (n = 17, DD > 17, AS ≥ 27). Younger patients with short DD benefitted more and faster than older patients, who however continued to improve 10% on average 1 year after DBS implants. Our data suggest that subjects with short DD may expect to achieve a better general outcome than those with longer DD and that AS may influence the time necessary to achieve maximal clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DBS:

Deep brain stimulation

GPi:

Globus pallidus internus

BFMDRS:

Burke-Fahn-Marsden Dystonia Rating Scale

AS:

Age at surgery (in years)

DD:

Disease duration (in years)

SS:

Speech and swallowing

SY:

Subjects with disease duration ≤17 years and age at surgery <27 years

SO:

Subjects with disease duration ≤17 years and age at surgery ≥27 years

LO:

Subjects with disease duration >17 years and age at surgery ≥27 years

References

  1. Geyer HL, Bressman SB (2006) The diagnosis of dystonia. Lancet Neurol 5:780–790

    Article  PubMed  Google Scholar 

  2. Tarsy D, Simon DK (2006) Dystonia. N Engl J Med 355:818–829

    Article  PubMed  CAS  Google Scholar 

  3. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P et al (2005) Bilateral deep-brain stimulation of the Globus Pallidus in primary generalized dystonia. N Engl J Med 352:459–467

    Article  PubMed  CAS  Google Scholar 

  4. Kupsch A, Benecke R, Müller J, Trottenberg T, Schneider GH, Poewe W et al (2006) Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 355:1978–1990

    Article  PubMed  CAS  Google Scholar 

  5. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Lagrange C, Yelnik J et al (2007) Bilateral, pallidal, deep brain stimulation in primary generalized dystonia: a prospective 3 year follow-up study. Lancet Neurol 6:223–229

    Article  PubMed  Google Scholar 

  6. Isaias IU, Alterman R, Tagliati M (2009) Deep brain stimulation for primary dystonia: long-term outcomes. Arch Neurol 66:465–470

    Article  PubMed  Google Scholar 

  7. Alterman RL, Miravite J, Weiss D, Shils JL, Bressman SB, Tagliati M (2007) Sixty hertz pallidal deep brain stimulation for primary torsion dystonia. Neurology 69:681–688

    Article  PubMed  CAS  Google Scholar 

  8. Isaias IU, Alterman RL, Tagliati M (2008) Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration. Brain 131:1895–1902

    Article  PubMed  Google Scholar 

  9. Burke RE, Fahn S, Marsden CD, Bressman SB, Moskowitz C, Friedman J (1985) Validity and reliability of a rating scale for the primary torsion dystonia. Neurology 35:73–77

    PubMed  CAS  Google Scholar 

  10. Shils J, Tagliati M, Alterman R (2002) Neurophysiological monitoring during neurosurgery for movement disorders. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery. Academic Press, San Diego, pp 393–436

    Google Scholar 

  11. Krauss JK, Yianni J, Loher JT, Aziz TZ (2004) Deep brain stimulation for dystonia. J Clin Neurophysiol 21:18–30

    Article  PubMed  Google Scholar 

  12. Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, Ostrem JL, Marks WJ Jr (2006) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 104:488–501

    Article  PubMed  Google Scholar 

  13. Kumar R (2002) Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson’s disease and dystonia. Mov Disord 17(Suppl 3):S198–S207

    Article  PubMed  Google Scholar 

  14. Yianni J, Bain P, Giladi N, Auca M, Gregory R, Joint C et al (2003) Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit. Mov Disord 18:436–442

    Article  PubMed  Google Scholar 

  15. Andrews C, Aviles-Olmos I, Hariz M, Foltynie T (2010) Which patients with dystonia benefit from deep brain stimulation? A metaregression of individual patient outcomes. J Neurol Neurosurg Psychiatry 81:1383–1389

    Article  PubMed  Google Scholar 

  16. Hamani C, Moro E, Zavidoff C, Poon Y, Lozono AM (2008) Location of active contacts in patients with primary dystonia treated with globus pallidus deep brain stimulation. Neurosurgery 62:217–223

    Article  PubMed  Google Scholar 

  17. Vasques X, Cif L, Gonzalez V, Nicholson C, Coubes P (2009) Factors predicting improvement in primary generalized dystonia treated by pallidal deep brain stimulation. Mov Disord 24:846–853

    Article  PubMed  Google Scholar 

  18. Gruber D, Trottenberg T, Kivi A, Schoenecker T, Kopp UA, Hoffmann KT, Schneider G-H, Kühn AA, Kupsch A (2009) Long term effects of pallidal deep brain stimulation in tardive dystonia. Neurology 73:53–58

    Article  PubMed  CAS  Google Scholar 

  19. Vitek JL (2002) Pathophysiology of dystonia: a neuronal model. Mov Disord 17:49–62

    Article  Google Scholar 

  20. Detante O, Vercueil L, Thobois S, Broussolle E, Costes N, Lavenne F et al (2004) Globus pallidus internus stimulation in primary generalized dystonia: a H2 15O PET study. Brain 127:1899–1908

    Article  PubMed  Google Scholar 

  21. Tisch S, Rothwell JC, Limousin P, Hariz MI, Corcos DM (2007) The physiological effects of pallidal deep brain stimulation in dystonia. IEEE Trans Neural Syst Rehabil Eng 15:166–172

    Article  PubMed  Google Scholar 

  22. Martella G, Tassone A, Sciamanna G et al (2009) Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain 132:2336–2349

    Article  PubMed  Google Scholar 

  23. Hutchinson S, Kobayashi M, Horkan CM, Pascual-Leone A, Alexander MP, Schlaug G (2002) Age-related differences in movement representation. Neuroimage 17:1720–1728

    Article  PubMed  CAS  Google Scholar 

  24. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58:630–635

    PubMed  CAS  Google Scholar 

  25. Naccarato M, Calautti C, Jones PS, Day DJ, Carpenter TA, Baron JC (2006) Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Neuroimage 32:1250–1256

    Article  PubMed  CAS  Google Scholar 

  26. Riecker A, Groschel K, Ackermann H, Steinbrink C, Witte O, Kastrup A (2006) Functional significance of age related differences in motor activation patterns. Neuroimage 32:1345–1354

    Article  PubMed  Google Scholar 

  27. Heuninckx S, Wenderoth N, Swinnen SP (2008) Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci 28:91–99

    Article  PubMed  CAS  Google Scholar 

  28. Tinazzi M, Rosso T, Fiaschi A (2003) Role of the somatosensory system in primary dystonia. Mov Disord 18:605–622

    Article  PubMed  Google Scholar 

  29. Landfield PW, McGaugh JL, Lynch G (1978) Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats. Brain Res 150:85–101

    Article  PubMed  CAS  Google Scholar 

  30. Barnes CA, Rao G, Foster TC, McNaughton BL (1992) Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1. Hippocampus 2:457–468

    Article  PubMed  CAS  Google Scholar 

  31. Moore CI, Browning MD, Rose GM (1993) Hippocampal plasticity induced by primed burst, but not long-term potentiation, stimulation is impaired in area CA1 of aged Fischer 344 rats. Hippocampus 3:57–66

    Article  PubMed  CAS  Google Scholar 

  32. Shen K-Z, Zhu Z-T, Munhall A, Johnson SW (2003) Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 50:314–319

    Article  PubMed  CAS  Google Scholar 

  33. Barnes CA, McNaughton BL (1985) An age comparison of the rates of acquisition and forgetting of spatial information in relation to long-term enhancement of hippocampal synapses. Behav Neurosci 99:1040–1048

    Article  PubMed  CAS  Google Scholar 

  34. Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:57–65

    Article  PubMed  CAS  Google Scholar 

  35. Otani S, Marshall CJ, Tate WP, Goddard GV, Abraham WC (1989) Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28:519–526

    Article  PubMed  CAS  Google Scholar 

  36. Norris CM, Korol DL, Foster TC (1996) Increased susceptibility to induction of long-term depression and long term potentiation reversal during aging. J Neurosci 16:5382–5392

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded in part by a grant of the Bachmann-Strauss Dystonia & Parkinson Foundation (MT) and the Mariani Foundation for Paediatric Neurology (IUI). The Authors would like to thank Silvia Molteni and Sara Tunesi for helpful advice in the implementation of the statistical analysis.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis U. Isaias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaias, I.U., Volkmann, J., Kupsch, A. et al. Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration. J Neurol 258, 1469–1476 (2011). https://doi.org/10.1007/s00415-011-5961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-5961-9

Keywords

Navigation