Skip to main content
Log in

Fair linking mechanisms for resource allocation with correlated player types

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Resource allocation is one of the most relevant problems in the area of Mechanism Design for computing systems. Devising algorithms capable of providing efficient and fair allocation is the objective of many previous research efforts. Usually, the mechanisms they propose deal with selfishness by introducing utility transfers or payments. Since using payments is undesirable in some contexts, a family of mechanisms without payments is proposed in this paper. These mechanisms extend the Linking Mechanism of Jackson and Sonnenschein introducing a generic concept of fairness with correlated preferences. We prove that these mechanisms have good incentive, fairness, and efficiency properties. To conclude, we provide an algorithm, based on the mechanisms, that could be used in practical computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We will use the terms node, user, and player interchangeably.

  2. By repeated games we refer to a scenario in which players interact by playing a similar (stage) game several times. Unlike a game played once, a repeated game allows for new strategies to be contingent on past moves, thus allowing for reputation and retribution effects.

  3. Schummer and Vohra note that “ there are many important environments where money cannot be used as a medium of compensation. This constraint can arise from ethical and/or institutional considerations: many political decisions must be made without monetary transfers; organ donations can be arranged by ‘trade’ involving multiple needy patients and their relatives, yet monetary compensation is illegal.”

  4. We denote by \(\Delta (S)\) the set of all probability distribution over some set S.

References

  1. Ahmad I, Ranka S, Khan SU (2008) Using game theory for scheduling tasks on multi-core processors for simultaneous optimization of performance and energy. In: Proceedings of the IEEE international symposium on parallel and distributed processing (IPDPS 2008). IEEE, pp 1–6

  2. Angus JE (1994) The probability integral transform and related results. SIAM Rev 36(4):652–654. doi:10.1137/1036146

    Article  MathSciNet  MATH  Google Scholar 

  3. Bell MG (2000) A game theory approach to measuring the performance reliability of transport networks. Transp Res Part B Methodol 34(6):533–545

    Article  Google Scholar 

  4. Berg D (2009) Copula goodness-of-fit testing: an overview and power comparison. Eur J Financ 15(7–8):675–701

  5. Burgert C, Rüschendorf L (2006) On the optimal risk allocation problem. Stat Decis 24(1/2006):153–171

  6. Camerer C (2011) Behavioral game theory: experiments in strategic interaction. Princeton University Press, Princeton

    MATH  Google Scholar 

  7. Ellison G (1994) Cooperation in the prisoner’s dilemma with anonymous random matching. Rev Econ Stud 61(3):567–588

    Article  MathSciNet  MATH  Google Scholar 

  8. Engelmann D, Grimm V (2012) Mechanisms for efficient voting with private information about preferences. Econ J 122(563):1010–1041

    Article  Google Scholar 

  9. Fang Z, Bensaou B (2004) Fair bandwidth sharing algorithms based on game theory frameworks for wireless ad-hoc networks. In: Proceedings of the twenty-third annual joint conference of the IEEE Computer and Communications Societies (INFOCOM 2004), vol 2. IEEE, pp 1284–1295

  10. Ferguson TS (2004) Mathematical statistics: a decision theoretic approach. Academic Press, New York

    MATH  Google Scholar 

  11. Fermanian JD (2013) An overview of the goodness-of-fit test problem for copulas. In: Copulae in mathematical and quantitative finance. Springer, New York, pp 61–89

  12. Friedman EJ, Halpern JY, Kash I (2006) Efficiency and nash equilibria in a scrip system for p2p networks. In: Proceedings of the 7th ACM conference on electronic commerce. ACM, pp 140–149

  13. Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int J Robot Res 23(9):939–954

    Article  Google Scholar 

  14. Harsanyi JC (2004) Games with incomplete information played by “Bayesian” players, i–iii: part i. the basic model&. Manag Sci 50(12_supplement):1804–1817

  15. Jackson MO (2001) A crash course in implementation theory. Soc Choice Welf 18(4):655–708

    Article  MathSciNet  MATH  Google Scholar 

  16. Jackson MO (2014) Mechanism theory. Available at SSRN 2542983

  17. Jackson MO, Sonnenschein HF (2003) The linking of collective decisions and efficiency. Microeconomics 0303007, EconWPA. http://ideas.repec.org/p/wpa/wuwpmi/0303007.html

  18. Jackson MO, Sonnenschein HF (2007) Overcoming incentive constraints by linking decisions. Econometrica 75(1):241–257. doi:10.1111/j.1468-0262.2007.00737.x

    Article  MathSciNet  MATH  Google Scholar 

  19. Jun S, Ahamad M (2005) Incentives in BitTorrent induce free riding. In: Proceedings of the 2005 ACM SIGCOMM workshop on economics of peer-to-peer systems (P2PECON ’05). ACM, New York, pp 116–121. doi:10.1145/1080192.1080199

  20. Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The eigentrust algorithm for reputation management in p2p networks. In: Proceedings of the 12th international conference on World Wide Web (WWW 2003). ACM, pp 640–651

  21. Kandori M (1992) Social norms and community enforcement. Rev Econ Stud 59(1):63–80

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolmogorov AN (1933) Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’Istituto Italiano degli Attuari 4:83–91

    MATH  Google Scholar 

  23. Koutsoupias E, Papadimitriou CH (2009) Worst-case equilibria. Comput Sci Rev 3(2):65–69

    Article  MATH  Google Scholar 

  24. Krishna V (2009) Auction theory. Academic Press, New York

    Google Scholar 

  25. Myerson RB (1985) Bayesian equilibrium and incentive-compatibility: an introduction. In: Social goals and social organization: essays in memory of Elisha Pazner, pp 229–260

  26. Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic game theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Papadimitriou CH (2011) Games, algorithms, and the Internet. In: Srinivasan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R (eds) Proceedings of the 20th international conference on World Wide Web (WWW 2011), Hyderabad, India, March 28– April 1, 2011. ACM, pp 5–6

  28. Procaccia AD, Tennenholtz M (2013) Approximate mechanism design without money. ACM Trans Econ Comput 1(4):18

    Article  Google Scholar 

  29. Rakonczai P, Zempléni A (2007) Copulas and goodness of fit tests. In: Recent advances in stochastic modeling and data analysis, pp 198–206

  30. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407

    Article  MathSciNet  MATH  Google Scholar 

  31. Roughgarden T (2005) Selfish routing and the price of anarchy, vol 174. The MIT Press, Cambridge

    MATH  Google Scholar 

  32. Rüschendorf L (2009) On the distributional transform, Sklar’s theorem, and the empirical copula process. J Stat Plan Inference 139(11):3921–3927

    Article  MATH  Google Scholar 

  33. Santos A, Fernández Anta A, López Fernández L (2013) Quid Pro Quo: a mechanism for fair collaboration in networked systems. PLoS One 8(9):e66575

    Article  Google Scholar 

  34. Shehory O, Kraus S (1998) Methods for task allocation via agent coalition formation. Artif Intell 101(1):165–200

    Article  MathSciNet  MATH  Google Scholar 

  35. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Universit de Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  36. Smirnov NV (1939) On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull Math Univ Moscou 2:3–16

    MathSciNet  Google Scholar 

  37. Srivastava V, Neel JO, MacKenzie AB, Menon R, DaSilva LA, Hicks JE, Reed JH, Gilles RP (2005) Using game theory to analyze wireless ad hoc networks. IEEE Commun Surv Tutor 7(1–4):46–56

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Santos.

Appendix A: Solution of the system with same number of resources

Appendix A: Solution of the system with same number of resources

We prove here the following theorem.

Theorem 6

The function \(\psi \) that optimizes the assignment with equal expected number of resources for two players defines a straight line \(\psi (\theta _1) = \theta _1 + \lambda \). The decision function is an assignment \(d = g_{\psi } (\theta ) = {\mathop {{{\mathrm{arg\,max}}}}_{1,2}}(\psi _1(\theta _1), \theta _2) = {\mathop {{{\mathrm{arg\,max}}}}_{1,2}}(\theta _1 + \lambda , \theta _2)\) when the objective is to maximize the utility, and \(d = g_{\psi } (\theta ) = {\underset{1,2}{{{\mathrm{arg\,min}}}}}(\psi _1(\theta _1), \theta _2) = {\underset{1,2}{{{\mathrm{arg\,min}}}}}(\theta _1 + \lambda , \theta _2)\) when the objective is to minimize.

Proof

What we want to prove is that the solution to the following system is \(\psi _1(x) = x + \lambda \).

$$\begin{aligned}&{\underset{\psi }{{min }}\;} \left( \int _0^1 \theta _1 \int _{\psi (\theta _1)}^1 \pi (\theta _1,\theta _2) d \theta _2 d \theta _1 + \int _0^1 \theta _2 \int _{\psi ^{-1}(\theta _2)}^1 \pi (\theta _1,\theta _2) d \theta _1 d \theta _2 \right) ,\nonumber \\&\text {s.t.} \nonumber \\&\int _0^1 \int _{\psi (\theta _1)}^1 \pi (\theta _1,\theta _2) d \theta _2 d \theta _1 = \frac{1}{2}. \end{aligned}$$
(25)

In order to calculate the optimal decision function, we define

$$\begin{aligned} F_1(\theta _1, w) = \int _w^1 \pi (\theta _1,\theta _2) d \theta _2 , \end{aligned}$$
(26)
$$\begin{aligned} F_2(\theta _2, w) = \int _w^1 \pi (\theta _1,\theta _2) d \theta _1 . \end{aligned}$$
(27)

Inserting these expressions into the integral (Eq. 25), we obtain

$$\begin{aligned}&{\underset{\psi }{{min }}\;} \left( \int _0^1 \theta _1 \text { } F_1(\theta _1, \psi (\theta _1)) d\theta _1 + \int _0^1 \theta _2 \text { } F_2(\theta _2, \psi ^{-1}(\theta _2)) d \theta _2 \right) , \nonumber \\&\text {s.t.} \nonumber \\&\int _0^1 \text { } F_1(\theta _1, \psi (\theta _1)) d\theta _1 = \frac{1}{2}. \end{aligned}$$
(28)

Note that we are considering here the particular case of one independent variable (\(\theta _1\)), one function \(\psi (\theta _1)\), and an integrand that depends at most on the first derivative of the function. Using a Lagrange multiplier \(\lambda (\theta _1)\), this expression defines a functional that depends on \(\psi \). The Lagrange multipliers are, in general, functions of the independent variable. However, as it can be easily seen from above equation, when the integrand and the constraint are independent of \(\theta _1\) themselves, then each Lagrange multiplier is a constant (denoted by \(\lambda \)).

$$\begin{aligned} \int _0^1 \theta _1 \text { } F_1(\theta _1, \psi (\theta _1)) d\theta _1 + \int _0^1 \theta _2 \text { } F_2(\theta _2, \psi ^{-1}(\theta _2)) d\theta _2 + \lambda \text { } \int _0^1 \text { } F_1(\theta _1, \psi (\theta _1)) d\theta _1 \end{aligned}$$
(29)

Thus, Eq. (29) is equivalent to

$$\begin{aligned}&\int _0^1 \theta _1 \text { } I(\theta _1, \psi , \psi ^{'}) d\theta _1 , \nonumber \\&\text{ where } \nonumber \\&I(\theta _1, \psi , \psi ^{'}) = (\theta _1 + \lambda )F_1(\theta _1,\psi ) + \psi F_2(\psi , \theta _1) \psi ^{'} . \end{aligned}$$
(30)

The usual variational procedure with respect to the function \(\psi (\theta _1)\) is to use the Euler–Lagrange equation

$$\begin{aligned} \partial _{\psi } I(\theta _1, \psi , \psi ^{'}) -\frac{\text {d}}{\text {d} \theta _1} \partial _{\psi ^{'}} I(\theta _1, \psi , \psi ^{'}) = 0 . \end{aligned}$$
(31)

That leads to the following Euler–Lagrange equation

$$\begin{aligned} \partial _{\psi } I(\theta _1, \psi , \psi ^{'})&= (\theta _1+\lambda ) \partial _{\psi } F_1(\theta _1, \psi ) + \psi ^{'} F_2( \psi , \theta _1)+\psi ^{'} \psi \partial _{\psi } F_2( \psi , \theta _1) \end{aligned}$$
(32)
$$\begin{aligned} \partial _{\psi ^{'}} I(\theta _1, \psi , \psi ^{'}) = \psi F_2( \psi , \theta _1) , \end{aligned}$$
(33)
$$\begin{aligned} \frac{\text {d}}{\text {d} \theta _1} \partial _{\psi ^{'}} I(\theta _1, \psi , \psi ^{'})&= \frac{\text {d}}{\text {d} \theta _1} \psi F_2( \psi , \theta _1) = \psi ^{'} F_2( \psi , \theta _1) + \psi \partial _{\psi } F_1(\theta _1, \psi )\nonumber \\&\qquad + \psi ^{'} \psi \partial _{\psi } F_2( \psi , \theta _1) , \end{aligned}$$
(34)

And,

$$\begin{aligned}&(\theta _1+\lambda ) \partial _{\psi } F_1(\theta _1, \psi ) + \psi ^{'} F_2( \psi , \theta _1) \end{aligned}$$
(35)
$$\begin{aligned}&\quad + \psi ^{'} \psi \partial _{\psi } F_2( \psi , \theta _1) - \psi ^{'} F_2( \psi , \theta _1) - \psi \partial _{\theta _1} F_2( \psi , \theta _1) - \psi ^{'} \psi \partial _{\psi } F_2( \psi , \theta _1) = 0. \end{aligned}$$
(36)

Solving,

$$\begin{aligned} (\theta _1+\lambda ) \partial _{\psi } F_1(\theta _1, \psi ) = \psi \partial _{\theta _1} F_2( \psi , \theta _1) . \end{aligned}$$
(37)

Our next step will be trying to simplify this expression. Using the Leibniz integral rule we have:

$$\begin{aligned}&\partial _{\psi } F_1(\theta _1, \psi ) = \frac{\partial }{\partial \psi } \int _{\theta _1}^{1} \pi (\theta _1,\theta _2)\,d\theta _1 \end{aligned}$$
(38)
$$\begin{aligned}&\quad =\int _{\theta _1}^{1} \frac{\partial }{\partial \psi } \pi (\theta _1,\theta _2)\,d\theta _1 +\pi (\theta _1,1) \frac{\partial }{\partial \psi } 1- \pi (\theta _1,\psi (\theta _1))\frac{\partial }{\partial \psi } \psi (\theta _1) = -\pi (\theta _1,\psi (\theta _1)), \end{aligned}$$
(39)

and

$$\begin{aligned}&\partial _{\theta _1} F_2(\psi , \theta _1) = \frac{\partial }{\partial \theta _1} \int _{\theta _1}^{1} f(x,y)\,d\theta _1 \end{aligned}$$
(40)
$$\begin{aligned}&= \int _{\theta _1}^{1} \frac{\partial }{\partial \theta _1} \pi (\theta _1,\theta _2)\,d\theta _1 +\pi (1,\theta _2) \frac{\partial }{\partial \theta _1} 1- \pi (\theta _1,\theta _2)\frac{\partial }{\partial \theta _1} \theta _1\nonumber \\&\qquad = -\pi (\theta _1,\psi (\theta _1)). \end{aligned}$$
(41)

And then, Eq. (37) reduces to:

$$\begin{aligned} (x+\lambda )\cdot ( -\pi (\theta _1,\psi (\theta _1))) = \psi \cdot ( -\pi (\theta _1,\psi (\theta _1))). \end{aligned}$$
(42)

Solving \(\psi (x)\), we finally obtain the solution as:

$$\begin{aligned} \psi (\theta _1) = \theta _1 + \lambda . \end{aligned}$$
(43)

Finally, note that \({\underset{i \in N}{{{\mathrm{arg\,min}}}}}(\psi _i(\theta _i)) = {\underset{1,2}{{{\mathrm{arg\,min}}}}}(\theta _1 + \lambda , \theta _2)\), given that,

$$\begin{aligned}&{\underset{1,2}{{{\mathrm{arg\,min}}}}}(\psi _1(\theta _1), \psi _2(\theta _2)) = {\underset{1,2}{{{\mathrm{arg\,min}}}}}(\theta _1 + \lambda _1, \theta _2 + \lambda _2) \end{aligned}$$
(44)
$$\begin{aligned}&\quad {\underset{1,2}{{{\mathrm{arg\,min}}}}}(\theta _1 + \lambda _1 - \lambda _2, \theta _2) = {\underset{1,2}{{{\mathrm{arg\,min}}}}}(\theta _1 + \lambda , \theta _2). \end{aligned}$$
(45)

Which completes the proof for the case of minimization. The proof for maximization is essentially identical. Observe that both cases lead to the same value of \(\lambda \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A., Fernández Anta, A., Cuesta, J.A. et al. Fair linking mechanisms for resource allocation with correlated player types. Computing 98, 777–801 (2016). https://doi.org/10.1007/s00607-015-0461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-015-0461-x

Keywords

Mathematics Subject Classification

Navigation