Skip to main content
Log in

A data-centric approach to manage business processes

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We proposed, in previous works, a business process execution language for data-driven workflow modeling, verification, and execution; the proposed model can present both control flow and shared data in workflow processes. It can be analyzed to verify its correctness before its deployment. In this paper, we are going to improve the semantics of our approach to allow better integration between data and control flow, and between the workflow and its external environment (such as relational databases and XML documents). We are also going to extend our approach to generate multidimensional data models, namely OLAP hypercubes, from data handled by the workflow, in order to provide synthetic view of data for decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The classical soundness property grants that a process has always the possibility to terminate (i.e. it is deadlocks and livelocks free) with a single token in its single final state and all the other state are empty, and that all its tasks are coverable (i.e. can potentially be executed) [1].

  2. A detailed presentation of Opus system with a demo version and examples are provided in https://sites.google.com/site/wfmsopus/.

References

  1. Aalst WVD (1998) The application of petri nets to workflow management. Circ Syst Comput 8(1):21–66

    Article  Google Scholar 

  2. Aalst WVD (2000) Workflow verification: finding control-flow errors using petri-net-based techniques. In: BPMMTES. Springer, London, pp 161–183

  3. Aalst WVD (2013) Business process management: a comprehensive survey. ISRN Softw Eng 2013:1–37, article ID 507984

  4. Aalst WVD, ter Hofstede AHM (2005) Yawl: yet another workflow language. Inform Syst 30(4):245–275

    Article  Google Scholar 

  5. Aalst WVD, Hofstede AT, Kiepuszewski B, Barros A (2003) Workflow patterns. Distrib Parallel Databases 14(1):5–51

    Article  Google Scholar 

  6. Aalst WVD, Weske M, Grünbauer D (2005) Case handling: a new paradigm for business process support. Data Knowl Eng 53(2):129–162

    Article  Google Scholar 

  7. Bhattacharya K, Hull R, Su J (2009) A data-centric design methodology for business processes. HRBPM 23:503–531

    Google Scholar 

  8. BPS-Solutions and COSA BV (2009) Cosa bpm 5.7 product description

  9. Cabibbo L, Torlone R (1998) A logical approach to multidimensional databases. In: ICEDT, LCNS, vol 1377. Springer, New York, pp 253–269

  10. Cerezo N, Montagnat J, Blay-Fornarino M (2013) Computer-assisted scientific workflow design. Grid Comput 11(3):585–612

    Article  Google Scholar 

  11. Chiao CM, Künzle V, Reichert M (2013) Integrated modeling of process- and data-centric software systems with philharmonicflows. In: CPSM@ICSM, pp 1–10

  12. Choo Y (1982) A structural petri net approach to concurrency. Technical report, California Institute of Technology

  13. Ciferri C, Ciferri R, Gmez L, Schneider M, Vaisman A, Zimnyi E (2013) Cube algebra: a generic user-centric model and query language for olap cubes. Data Warehous Min 9(2):39–65

    Article  Google Scholar 

  14. Damaggio E, Hull R, Vaculin R (2013) On the equivalence of incremental and fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. Inform Syst 38(4):561–584

    Article  Google Scholar 

  15. del-Río-Ortega A, de Reyna MRA, Toro AD, Cortés AR (2012) Defining process performance indicators by using templates and patterns. In: BPM, pp 223–228

  16. Deutsch A, Hull R, Patrizi F, Vianu V (2009) Automatic verification of data-centric business processes. In: ICDT, pp 252–267

  17. Fan W, Ma L (2006) Selectively storing xml data in relations. In: DEXA, pp 22–32

  18. Fong J, Pang F, Bloor C (2001) Converting relational database into xml document. In: DEXA, IEEE

  19. Fong J, Wong H, Cheng Z (2003) Converting relational database into xml documents with dom. Inform Softw Technol 45(6):335–355

    Article  Google Scholar 

  20. Gonzalez P, Griesmayer A, Lomuscio A (2012) Verifying gsm-based business artifacts. In: ICWS, pp 25–32

  21. Gyssens M, Lakshmanan L (1997) A foundation for multidimensional databases. In: VLDB, Athens, pp 106–115

  22. Haddar N, Tmar M, Gargouri F (2012) A data-driven workflow based on structured tokens petri net. In: ICSEA, pp 154–160

  23. Haddar N, Tmar M, Gargouri F (2012) Implementation of a data-driven workflow management system. In: CSE. IEEE Computer Society, pp 111–118

  24. Haddar N, Tmar M, Gargouri F (2013) A framework for data-driven workflow management: modeling, verification and execution. In: DEXA, LNCS, vol 8055. Springer, pp 239–253

  25. Hollingsworth D (1999) The workflow management coalition terminology and glossary. Tech Rep TC00-1011, Workflow Management Coalition

  26. ISA RGoASE (2014) Ppinot. http://www.isa.us.es/ppinot/

  27. Jensen K (1986) Coloured petri nets. LNCS 254:248–299

    MathSciNet  Google Scholar 

  28. Kamble A (2008) A conceptual model for multidimensional data. In: APCCM, pp 29–38

  29. Keller G, Teufel T (1998) Sap R/3 process oriented implementation, premiFre, Tdition edn. Addison-Wesley Longman Publishing Co., Inc, Boston

    Google Scholar 

  30. Kimball R (1996) Data warehouse toolkit: practical techniques for building dimensional data warehouses. John Wiley & Sons Inc, New York

    Google Scholar 

  31. Kindler E (2006) On the semantics of epcs: resolving the vicious circle. Data Knowl Eng 56(1):23–40

    Article  Google Scholar 

  32. Künzle V, Reichert M (2011) Philharmonicflows: towards a framework for object-aware process management. Softw Maintenance Evol Res Pract 23(4):205–244

    Article  Google Scholar 

  33. Lee D, Mani M, Chu WW (2003) Schema conversion methods between xml and relational models. In: Knowledge Transformation for the Semantic Web, pp 1–17

  34. Lenhard J, Wirtz G (2013) Detecting portability issues in model-driven BPEL mappings. In: SEKE, Boston

  35. Malinowski E, Zimnyi E (2008) Advanced data warehouse design: from conventional to spatial and temporal applications (data-centric systems and applications). Springer, New York

    Google Scholar 

  36. Meyer A, Smirnov S, Weske M (2011) Data in business processes. Technifcal report, des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam, München

  37. Microsoft Corporation (2014) Power bi for office 365 faq. http://office.microsoft.com/en-us/excel-help/power-bi-for-office-365-faq-HA104219793.aspx

  38. Microsoft SQL Server (2013) Sql server in-memory oltp internals overview for ctp1

  39. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  40. Neely A, Richards H, Mills J, Platts K, Bourne M (1997) Designing performance measures: a structured approach. Oper Prod Manage 17:1131–1152

    Article  Google Scholar 

  41. Nigam A, Caswell N (2003) Business artifacts: an approach to operational specification. IBM Syst 42(3):428–445

    Article  Google Scholar 

  42. OMG (2009) Case management process modeling (cmpm) request for proposal. OMG Document: Bmi/2009-09-23

  43. OMG (2011) Business process model and notation (bpmn)(version 2.0). Tech. rep., Object Management Group. http://www.omg.org/spec/BPMN/2.0/

  44. OMG (2011) Omg unified modeling languagetm (omg uml), superstructure version 2.4.1. Technical Report formal/2011-08-06, Object Management Group

  45. Oracle Corporation (2013) Oracle business intelligence foundation suite. http://www.oracle.com/technetwork/middleware/bi/bi-foundation-suite-wp-215243.pdf

  46. Pardillo J, Mazón JN, Trujillo J (2010) Extending ocl for olap querying on conceptual multidimensional models of data warehouses. Inform Sci 180(5):584–601

    Article  Google Scholar 

  47. Petri C (1962) Communications with automata. PhD thesis, Institut für instrumentelle Mathematik, Bonn

  48. Plale B, Withana EC, Herath C, Chandrasekar K, Luo Y (2012) Effectiveness of hybrid workflow systems for computational science. In: ICCS, Procedia Computer Science, vol 9. Elsevier, pp 508–517

  49. Ravat F, Teste O, Tournier R, Zurfluh G (2008) Algebraic and graphic languages for olap manipulations. In: SAUDMWT. IGI Global, pp 60–90

  50. Rizzi S (2007) Conceptual modeling solutions for the data warehouse. In: Database technologies: concepts, methodologies, tools, and applications, pp 86–104

  51. Schwartzberg G (2014) Oracle essbase 11.1.2.3

  52. Sidorova N, Stahl C, Trčka N (2011) Soundness verification for conceptual workflow nets with data: early detection of errors with the most precision possible. Inform Syst 36(7):1026–1043

    Article  Google Scholar 

  53. Silveira P, Rodríguez C, Casati F, Daniel F, Andrea VD, Worledge C, Taheri Z (2009) On the design of compliance governance dashboards for effective compliance and audit management. In: Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, Lecture Notes in Computer Science, vol 6275, pp 208–217

  54. Solomakhin D, Montali M, Tessaris S, De Masellis R (2013) Verification of artifact-centric systems: decidability and modeling issues. CoRR abs/1304.1697

  55. Stancu M (2012) From relational databases to xml documents: efficient alternatives for publishing. Digit Inform Wireless Commun 2(1):582–590

    Google Scholar 

  56. Sun Y, Hull R, Vaculín R (2012) Parallel processing for business artifacts with declarative lifecycles. OTM Conf 1:433–443

    Google Scholar 

  57. Syriani E, Ergin H (2012) Operational semantics of uml activity diagram: an application in project management. In: MoDRE. IEEE Computer Society, pp 1–8

  58. TIBCO Software Inc (2006) Tibco staffware process suite. http://about.reuters.com/partnerships/tibco/material/Staffware_whitepaper.pdf

  59. Trčka N, Aalst WVD, Sidorova N (2009) Data-flow anti-patterns: discovering data-flow errors in workflows. In: CAiSE. Springer, Berlin, Heidelberg, pp 425–439

  60. Tsois A, Karayannidis N, Sellis T (2001) Mac: conceptual data modeling for olap. In: DMDW, pp 5–11

  61. Van Gorp P, Dijkman R (2013) A visual token-based formalization of bpmn 2.0 based on in-place transformations. Inform Softw Technol 55(2):365–394

    Article  Google Scholar 

  62. Wynn M (2006) Semantics, verification, and implementation of workflows with cancellation regions and or-joins. Ph.D. thesis, Faculty of Information Technology, Queensland University of Technology

  63. Wynn M, Aalst WVD, Verbeek H, Hofstede AT, Edmond D (2009) Business process verification-finally a reality!. Business Process Manage 15(1):74–92

    Article  Google Scholar 

  64. YAWL Foundation (2014) Yawl editor 3.0 (beta). http://www.yawlfoundation.org/pages/resources/yawl3.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahla Haddar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddar, N., Tmar, M. & Gargouri, F. A data-centric approach to manage business processes. Computing 98, 375–406 (2016). https://doi.org/10.1007/s00607-015-0440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-015-0440-2

Keywords

Mathematics Subject Classification

Navigation