Skip to main content
Log in

Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Generalist plant–pollinator interactions are prevalent in nature. Here, we untangle the role of nectar production in the visitation and pollen release/deposition in Miconia theizans, a nectar-rewarding plant within the specialised pollen-rewarding plant family Melastomataceae. We described the visitation rate, nectar dynamics and pollen release from the poricidal anthers and deposition onto stigmas during flower anthesis. Afterwards, we used a linear mixed model selection approach to understand the relationship between pollen and nectar availability and insect visitation rate and the relationship between visitation rate and reproductive success. Miconia theizans was visited by 86 insect species, including buzzing and non-buzzing bees, wasps, flies, hoverflies, ants, beetles, hemipterans, cockroaches and butterflies. The nectar produced explained the visitation rate, and the pollen release from the anthers was best explained by the visitation rate of pollinivorous species. However, the visitation rates could not predict pollen deposition onto stigmas. Nectar production may explain the high insect diversity and led to an increase in reproductive success, even with unpredictable pollen deposition, indicating the adaptive value of a generalised pollination system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar R, Martén-Rodriguez S, Avila-Sakar G, Ashworth L, Lopeazaraiza-Mikel M, Quesada M (2015) A global review of pollination syndromes: a response to Ollerton et al. 2015. J Pollinat Ecol 17:126–128

    Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos 117:1796–1807. doi:10.1111/j.0030-1299.2008.16987.x

    Article  Google Scholar 

  • Albuquerque LB, Aquinol FG, Costa LC, Miranda ZJG, Sousa SR (2013) Melastomataceae Juss. species with potential use in ecological restoration of gallery riparian vegetation of Cerrado/Savanna. Polibotánica 35:1–19

    Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen´s climate classification map for Brazil. Meteorol Z 22:711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Amorim FW, Galetto L, Sazima M (2012) Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Pl Biol 15:317–327. doi:10.1111/j.1438-8677.2012.00643.x

    Article  Google Scholar 

  • Armbruster WS (1988) Multilevel comparative analysis of the morphology, function, and evolution of Dalechampia blossoms. Ecology 69:1746–1761. doi:10.2307/1941153

    Article  Google Scholar 

  • Armbruster WS, Baldwin BG (1998) Switch from specialized to generalized pollination. Nature 394:632. doi:10.1038/29210

    Article  CAS  Google Scholar 

  • Bartomeus I, Park M, Gibbs J, Danforth B, Lakso A, Winfree R (2013) Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecol Lett 16:1331–1338. doi:10.1111/ele.12170

    Article  PubMed  Google Scholar 

  • Berger BA, Kriebel R, Spalink D, Sytsma KJ (2016) Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molec Phylogen Evol 95:116–136. doi:10.1016/j.ympev.2015.10.001

    Article  Google Scholar 

  • Borges MR, Melo C (2012) Frugivory and seed dispersal of Miconia theaezans (Bonpl.) Cogniaux (Melastomataceae) by birds in a transition palm swamp: gallery forest in Central Brazil. Brazil J Biol 72:25–31

    Article  CAS  Google Scholar 

  • Brito VLG, Sazima M (2012) Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Pl Syst Evol 298:1271–1279. doi:10.1007/s00606-012-0633-5

    Article  Google Scholar 

  • Brito VLG, Fendrich TG, Smidt EC, Varassin IG, Goldenberg R (2016) Shifts from specialised to generalised pollination systems in Miconieae (Melastomataceae) and their relation with anther morphology and seed number. Pl Biol 18:585–593. doi:10.1111/plb.12432

    Article  CAS  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in Angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 73–113

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Busch JW, Delph LF (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann Bot (Oxford) 109:553–562. doi:10.1093/aob/mcr219

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791. doi:10.2307/2531532

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Hills HG (1992) Orchid phylogeny, flower sexuality and fragrance-seeking. Bioscience 42:43–49. doi:10.2307/1311627

    Article  Google Scholar 

  • Cheptou PO (2012) Clarifying Baker's Law. Ann Bot (Oxford) 109:633–641. doi:10.1093/aob/mcr127

    Article  Google Scholar 

  • CPTEC (2010) Centro de previsão de tempo e estudos climáticos. Available at: http://satelite.cptec.inpe.br/PCD/. Accessed 15 Feb 2010

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination ecology. Enviroquest, Cambridge

    Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Rev Ecol Syst 35:375–403. doi:10.1146/annurev.ecolsys.34.011802.132347

    Article  Google Scholar 

  • Fracasso CM, Sazima M (2004) Pollination of Cambessedesia hilariana (Kunth) DC. (Melastomataceae): reproductive success versus bee diversity, behaviour and frequency of visits. Brazil J Bot 27:797–804

    Google Scholar 

  • Franco AM, Goldenberg R, Varassin IG (2011) Pollinator guild organization and its consequences for reproduction in three synchronopatric species of Tibouchina (Melastomataceae). Revista Brasil Entomol 55:381–388

    Article  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annual Rev Ecol Syst 19:207–233. doi:10.1146/annurev.es.19.110188.001231

    Article  Google Scholar 

  • Galetto L, Bernardello G (2005) Nectar. In: Dafni A, Kevan P, Husband BC (eds) Practical pollination biology. Enviroquest, Ontario, pp 261–313

    Google Scholar 

  • Goldenberg R, Shepherd GJ (1998) Studies in reproductive biology of Melastomataceae in “cerrado” vegetation. Pl Syst Evol 211:13–29. doi:10.1007/BF00984909

    Article  Google Scholar 

  • Goldenberg R, Penneys DS, Almeda F, Judd WS, Michelangeli FA (2008) Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse neotropical genus. Int J Pl Sci 169:963–979. doi:10.1086/589697

    Article  Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Amer Naturalist 133:323–344

    Article  Google Scholar 

  • Hargreaves AL, Harder LD, Johnson SD (2009) Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol Rev 84:259–276. doi:10.1111/j.1469-185X.2008.00074.x

    Article  PubMed  Google Scholar 

  • Herrera CM (2005) Plant generalization on pollinators: species property or local phenomenon? Amer J Bot 92:13–20. doi:10.3732/ajb.92.1.13

    Article  Google Scholar 

  • Kay KM, Reeves PA, Olmstead RG, Schemske DW (2005) Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. Amer J Bot 92:1899–1910. doi:10.3732/ajb.92.11.1899

    Article  CAS  Google Scholar 

  • King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Meth Ecol Evol 4:811–818. doi:10.1111/2041-210X.12074

    Article  Google Scholar 

  • Kriebel R, Zumbado MA (2014) New reports of generalist insect visitation to flowers of species of Miconia (Miconieae: melastomataceae) and their evolutionary implications. Brittonia 66:396–404. doi:10.1007/s12228-014-9337-1

    Article  Google Scholar 

  • Larsson BMH, Barret SCH (1999) The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). J Ecol 87:371–381. doi:10.1046/j.1365-2745.1999.00362.x

    Article  Google Scholar 

  • Lunau K, Piorek V, Krohn O, Pacini E (2015) Just spines—mechanical defense of malvaceous pollen against collection by corbiculate bees. Apidologie 46:144–149. doi:10.1007/s13592-014-0310-5

    Article  Google Scholar 

  • Luo Z, Zhang D, Renner SS (2008) Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin’s division-of-labour hypothesis. Funct Ecol 22:794–800. doi:10.1111/j.1365-2435.2008.01444.x

    Article  Google Scholar 

  • Martén-Rodriguez S, Fenster CB, Agnarsson I, Skog LE, Zimmer EA (2010) Evolutionary breakdown of pollination specialization in a Caribbean plant radiation. New Phytol 188:403–417. doi:10.1111/j.1469-8137.2010.03330.x

    Article  PubMed  Google Scholar 

  • Melo GF, Machado IC, Luceño M (1999) Reprodución de tres especies de Clidemia (Melastomataceae) en Brasil. Rev Biol Trop 47:359–363

    Google Scholar 

  • Niemirski R, Zych M (2011) Fly pollination of dichogamous Angelica sylvestris (Apiaceae): how (functionally) specialized can a (morphologically) generalized plant be? Pl Syst Evol 294:147–158. doi:10.1007/s00606-011-0454-y

    Article  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to a generalist flower. Taxon 56:717–728. doi:10.2307/25065856

    Article  Google Scholar 

  • Ollerton J, Rech AR, Waser NM, Price MV (2015) Using the literature to test pollination syndromes—some methodological cautions. J Pollinat Ecol 16:101–107

    Google Scholar 

  • Padgurschi MCG, Pereira LP, Tamashiro JY, Joly CA (2011) Composição e similaridade florística entre duas áreas de Floresta Atlântica Montana, São Paulo, Brasil. Biota Neotrop 11:139–152

    Article  Google Scholar 

  • Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant AG, Grossenbacher DL, Hovick SM (2015) The scope of Baker's law. New Phytol 208:656–667. doi:10.1111/nph.13539

    Article  PubMed  Google Scholar 

  • Pereira AC, Silva JB, Goldenberg R, Melo GAR, Varassin IG (2011) Flower color change accelerated by bee pollination in Tibouchina (Melastomataceae). Flora 206:491–497. doi:10.1016/j.flora.2011.01.004

    Article  Google Scholar 

  • Renner SS (1989) A survey of reproductive biology in Neotropical Melastomataceae and Memecylaceae. Ann Missouri Bot Gard 76:496–518. doi:10.2307/2399497

    Article  Google Scholar 

  • Rosas-Guerrero V, Aguilar R, Martén-Rodriguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400. doi:10.1111/ele.12224

    Article  PubMed  Google Scholar 

  • Santos APM, Romero R, Oliveira PEAM (2010) Biologia reprodutiva de Miconia angelana (Melastomataceae), endêmica da Serra da Canastra, Minas Gerais. Brazil J Bot 33:333–341

    Article  Google Scholar 

  • Schlindwein C, Wittmann D, Martins CF, Hamm A, Siqueira JA, Schiffler D, Machado IC (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Pl Syst Evol 250:147–156. doi:10.1007/s00606-004-0246-8

    Article  Google Scholar 

  • Smith SD (2010) Using phylogenetics to detect pollinator-mediated floral evolution. New Phytol 188:354–363. doi:10.1111/j.1469-8137.2010.03292.x

    Article  PubMed Central  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in Angiosperms, I: pollination mechanisms. Annual Rev Ecol Syst 1:307–326. doi:10.1146/annurev.es.01.110170.001515

    Article  Google Scholar 

  • Tabarelli M, Mantovani W (1999) Woody species richness in the Brazilian Atlantic forest, state of São Paulo (Brazil). Brazil J Bot 59:239–250

    Google Scholar 

  • Thomson JD, McKenna MA, Cruzan MB (1989) Temporal patterns of nectar and pollen production in Aralia hispida: implications for reproductive success. Ecology 70:1061–1068. doi:10.2307/1941375

    Article  Google Scholar 

  • Thomson JD, Wilson P, Valenzuela M, Malzone M (2000) Pollen presentation and pollination syndromes, with special reference to Penstemon. Pl Spec Biol 15:11–29. doi:10.1046/j.1442-1984.2000.00026.x

    Article  Google Scholar 

  • Thorp RW (1979) Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Ann Missouri Bot Gard 66:788–812. doi:10.2307/2398919

    Article  Google Scholar 

  • Tripp EA, Manos PS (2008) Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae). Evolution 62:1712–1737. doi:10.1111/j.1558-5646.2008.00398.x

    Article  PubMed  Google Scholar 

  • Vallejo-Marín M, Manson JS, Thomson JD, Barrett SC (2009) Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. J Evolution Biol 22:828–839. doi:10.1111/j.1420-9101.2009.01693.x

    Article  Google Scholar 

  • Varassin IG, Penneys DS, Michelangeli FA (2008) Comparative anatomy and morphology of nectar-producing Melastomataceae. Ann Bot (Oxford) 102:899–909. doi:10.1093/aob/mcn180

    Article  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago

    Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060. doi:10.2307/2265575

    Article  Google Scholar 

  • Waser NM, Ollerton J, Erhardt A (2011) Typology in pollination biology: lessons from an historical critique. J Pollinat Ecol 3:1–7

    Google Scholar 

  • Westerkamp C (1996) Pollen in bee-flower relations Some considerations on melittophily. Bot Acta 109:325–332. doi:10.1111/j.1438-8677.1996.tb00580.x

    Article  Google Scholar 

  • Westerkamp C, Claßen-Bockhoff R (2007) Bilabiate flowers—the ultimate response to bees? Ann Bot (Oxford) 100:361–374. doi:10.1093/aob/mcm123

    Article  Google Scholar 

  • Whitall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–709. doi:10.1038/nature05857

    Article  Google Scholar 

  • Wilson P, Wolfe AD, Armbruster WS, Thomson JD (2007) Constrained lability in floral evolution: counting convergent origins of hummingbird pollination in Penstemon and Keckiella. New Phytol 176:883–890. doi:10.1111/j.1469-8137.2007.02219.x

    Article  PubMed  Google Scholar 

  • Zych M, Michalska B, Krasicka-Korczyńska E (2014) Myophily in the critically endangered umbelliferous plant Ostericum palustre Besser (Apiaceae). Pl Syst Evol 300:187–196. doi:10.1007/s00606-013-0870-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors kindly thank our friends for help in the field and lab: Pedro J. Bergamo, Maraísa Braga, Priscila Vieira, Camila Oliveira, Rafael Pereira and specially Carine Carriere and Cristiano Silva. We thank Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP—for funding support to V.L.G.B. (Proc. 2010/51494-5), A.R.R. (Proc. 2009/54491-0), J.O. (Visiting Researcher—Proc. 2013/14442-5) and M.S. (2012/50425-5). MS thanks the funding support from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (303084/2011-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius L. G. de Brito.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Pablo Vargas.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Taxa visiting Miconia theizans flowers, the reward(s) consumed and their relative frequency at Serra do Mar State Park (Santa Virgínia station) São Paulo, Brazil.

Online Resource 2. The relationship between nectar volume and the filter paper weight used in the field to estimate the nectar volume produced by flowers of Miconia theizans at Serra do Mar State Park (Santa Virgínia station) São Paulo, Brazil.

Online Resource 3. Weather conditions during field data collection of Miconia theizans at Serra do Mar State Park (Santa Virgínia station) São Paulo, Brazil.

Online Resource 4. Results of selection of the best fitting linear mixed model to visitation rate on Miconia theizans at Serra do Mar State Park (Santa Virgínia station), São Paulo, Brazil.

Online Resource 5. Results of selection of the best fitting linear mixed model to pollen release and deposition of Miconia theizans at Serra do Mar State Park (Santa Virgínia station), São Paulo, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Brito, V.L.G., Rech, A.R., Ollerton, J. et al. Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans . Plant Syst Evol 303, 709–718 (2017). https://doi.org/10.1007/s00606-017-1405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1405-z

Keywords

Navigation