Skip to main content
Log in

Identification of four novel stu-miR169s and their target genes in Solanum tuberosum and expression profiles response to drought stress

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plant microRNAs are important endogenous gene regulators which regulate gene expression at post-transcriptional level. Previous studies have identified that miR169 family members regulated the NF-YA transcription factors which have been implicated in plant development and stress responses. At present, reported potato genome sequence data offered an opportunity for global insights into the molecular mechanisms of the miR169/NF-YA modules in potato. In this work, 4 novel stu-miR169 family members were predicted in potato based on potato genome sequence data. miRNA target prediction showed that mature stu-miR169 sequences have a bite sit on the 5 of StNF-YA genes in potato, and three of them were validated by RNA ligase-mediated 5′RACE (5′ RLM-RACE) assay. The result from investigation of the expression patterns of mature stu-miR169 and their predicted target genes also showed that mature stu-miR169 was down-regulated in response to the drought stress. There were some targeted StNF-YA genes that exhibited a negative expression pattern with mature stu-miR169 during the different periods of drought-treated samples. Taken together, the decreased expression of stu-miR169 might drive over-expression of NF-YA family members, they are related to resistances against drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJF (1990) Basic local alignment search tool. J Molec Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:481

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The pfam protein families database. Nucl Acids Res 30:276–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Gene Dev 18:1179–1186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Ren YY, Zhang YY, Xu JC, Sun FS, Zhang ZY, Wang YW (2012a) Genome-wide identification and expression analysis of heat responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wang TZ, Zhao MG, Tian QY, Zhang WH (2012b) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386

    Article  PubMed  CAS  Google Scholar 

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucl Acids Res 39:W155–W159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding YF, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Wang K, Liu X, Chen S, Chen J (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437:14–21

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T (2008) Large-scale assignment of orthology: back to phylogenetics? Genome Biol 9:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res 34:140–144

    Article  CAS  Google Scholar 

  • Guddeti S, Zhang DC, Li AL, Leseberg CH, Kang H, Li XG, Zhai WX, Johns MA, Mao L (2005) Molecular evolution of the rice miR395 gene family. Cell Res 15:631–638

    Article  PubMed  CAS  Google Scholar 

  • Hwang EW, Shin SJ, Park SC, Jeong MJ, Kwon HB (2011a) Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum. Genes Genom 33:105–110

    Article  CAS  Google Scholar 

  • Hwang EW, Shin SJ, Yu BK, Byun MO, Kwon HB (2011b) miR171 family members are involved in drought response in Solanum tuberosum. J Pl Biol 54:43–48

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annual Rev Pl Biol 57:19–53

    Article  CAS  Google Scholar 

  • Kapustin Y, Souvorov A, Tatusova T, Lipman D (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct 3:1–13

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Pl Biol 8:38–44

    Article  CAS  Google Scholar 

  • Kim HJ, Baek KH, Lee BW, Choi D, Hur CG (2011) In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants. Genome 54(2):91–98

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laloum T, De MS, Gamas P, Baudin M, Niebel A (2012) CCAAT-box binding transcription factors in plants: y so many? Trends Pl Sci 18:157–166

    Article  CAS  Google Scholar 

  • Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH (2010) Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucl Acids Res 38:3081–3093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Pl Cell 20:2238–2251

    Article  CAS  Google Scholar 

  • Li BS, Qin YR, Duan H, Yin WL, Xia XL (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li BS, Duan H, Li JG, Deng XW, Yin WL, Xia XL (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Pl Molec Biol 81:525–539

    Article  CAS  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    PubMed  CAS  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing- associated small RNAs in plants. Pl Cell 14:1605–1619

    Article  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Pl Cell 17:2186–2203

    Article  CAS  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Pl J 55:131–151

    Article  CAS  Google Scholar 

  • Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Pl Biol 12:183

    Article  CAS  Google Scholar 

  • Maity SN, de Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178

    Article  PubMed  CAS  Google Scholar 

  • Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R (2013) Sequence specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152:132–143

    Article  PubMed  CAS  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Pl Molec Biol 82:113–129

    Article  CAS  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Pl Physiol 150:1541–1555

    Article  CAS  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R (2012) The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Pl Cell 24:4777–4792

    Article  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Pl Cell 18:2051–2065

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KM, Kaufman LS (2007) Opposite ends of the spectrum: plant and animal g-protein signaling. Pl Signal Behav 2:480–482

    Article  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2010) Identification, characterization and expression analysis of microRNAs and their targets in the potato (Solanum tuberosum). Gene 473:8–22

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 6:e28009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu MY, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L (2013) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Rev Pl Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yang W, Liu X, Zhang J, Feng J, Li C, Chen J (2010) Prediction and validation of conservative microRNAs of Solanum tuberosum L. Molec Biol Rep 37:3081–3087

    Article  CAS  Google Scholar 

  • Yu X, Wang H, Lu YZ, Ruiter M, Cariaso M, Prins M, Tunen A, He YK (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Pl Biol 12:182

    Article  CAS  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006a) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006b) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006c) Conservation and divergence of plant microRNA genes. Pl J 46:243–259

    Article  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006d) Evidence that miRNAs are different from other RNAs. Cell Molec Life Sci 63:246–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009a) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genom 10:449

    Article  CAS  Google Scholar 

  • Zhang W, Luo Y, Gong X, Zeng W, Li S (2009b) Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Marshall D, Bryan GJ, Hornyik C (2013) Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS ONE 8:e57233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang N, Yang J, Wang Z, Wen Y, Wang J, He W, Liu B, Si H, Wang D (2014) Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE 9:e95489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molec Biol 10:29

    Article  CAS  Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Rev Pl Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research program was sponsored by the National Natural Science Foundation of China (No. 31460370), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20106202120003), the Fundamental Research Funds for the Universities of Gansu Province (2014), and International Science and Technology Cooperation Program of China (No. 0102014DFG31570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Additional information

Handling editor: Jorg Fuchs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, N., Zhou, X. et al. Identification of four novel stu-miR169s and their target genes in Solanum tuberosum and expression profiles response to drought stress. Plant Syst Evol 302, 55–66 (2016). https://doi.org/10.1007/s00606-015-1242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1242-x

Keywords

Navigation