Skip to main content
Log in

Natural hybridization among subspecies of Turnera sidoides L. (Passifloraceae) revealed by morphological and genetic evidence

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Turnera sidoides is a complex of outcrossing, perennial, rhizomatous herbs that is widely distributed in southern South America. Five subspecies are recognized taxonomically based on morphological features and geographical distribution. In certain regions, the areas of distribution of the subspecies overlap partially. In such contact zones, the extent of reproductive barriers among subspecies is still largely unknown, but morphologically intermediate individuals have been found in the field, indicating that hybridization may actually occur between subspecies. Crossability among subspecies of T. sidoides has been shown by experimental studies with cultivated plants, but the mechanisms involved in natural populations are still unknown. To investigate the mechanisms that underlie gene flow within the T. sidoides complex, in this paper we analyze the morphological and genetic variation, as well as the crossability among taxa in a contact zone between subspecies pinnatifida and sidoides, in southeastern Uruguay. Our results constitute the first evidences of ongoing natural hybridization between subspecies of T. sidoides and suggest that, although hybridization may not have been of significance in the early phase of the species differentiation, reticulate evolution is ongoing enhancing the current morphological and genetic variability of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arbo MM (1985) Notas taxonómicas sobre Turneráceas Sudamericanas. Candollea 40:175–191

    Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annual Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technol 31:87–90

    CAS  PubMed  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Elías G (2010) Dinámica de una zona de contacto diploide-tetraploide de Turnera sidoides subsp. pinnatifida (Turneraceae). Doctoral Thesis, Universidad Nacional de Tucumán (Argentina)

  • Elías G, Sartor M, Solís Neffa VG (2011) Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina. J Pl Res 124:25–34

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Felber F, Bever JD (1997) Effect of triploid fitness on the coexistence of diploids and tetraploids. Biol J Linn Soc 60:95–106

    Article  Google Scholar 

  • Fernández A (1973) El ácido láctico como fijador cromosómico. Bol Soc Argent Bot 15:287–290

    Google Scholar 

  • Fernández A (1987) Estudios cromosómicos en Turnera y Piriqueta (Turneraceae). Bonplandia 6:1–21

    Google Scholar 

  • Fernández A, Arbo MM (1989) Relaciones genómicas entre cuatro especies diploides de Turnera con flores amarillas (Serie Canaligerae). Bonplandia 6:93–109

    Google Scholar 

  • Fernández A, Solís Neffa VG (2004) Genomic relationships between Turnera krapovickasii (2x, 4x) and T. ulmifolia (6x) (Turneraceae, Turnera). Caryologia 57:45–51

    Article  Google Scholar 

  • Fernández A, Rey H, Solís Neffa VG (2010) Evolutionary relationships between the diploid Turnera grandiflora and the octoploid T. fernandezii (Series Turnera, Turneraceae). Ann Bot Fenn 47:321–329

    Article  Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Grant BR, Grant PR (1996) High survival of Darwin’s finch hybrids: effects of beak morphology and diets. Ecology 77:500–509

    Article  Google Scholar 

  • Harrison RG (1990) Hybrids zones: windows on evolutionary process. Oxford Surv Evol Biol 7:69–128

    Google Scholar 

  • InfoStat (2012) InfoStat, versión 2012. Manual del Usuario. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Primera Edición, Editorial Brujas Argentina

  • Kovalski IE (2013) Origen y establecimiento de poliploides en poblaciones naturales de Turnera sidoides. Doctoral Thesis, Universidad Nacional de Córdoba (Argentina)

  • Kovalski IE, Roggero Luque JM, Solís Neffa VG (2011) Estudios citogenéticos en triploides del complejo Turnera sidoides. BAG XL (Suplemento): 124

  • Kovalsky IE, Solís Neffa VG (2012) Evidence of 2n microspore production in a natural diploid population of Turnera sidoides subsp. carnea and its relevance in the evolution of the T. sidoides (Turneraceae) autopolyploid complex. J Pl Res 125:725–734

    Article  Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plants populations. Taxon 24:35–43

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    Article  CAS  PubMed  Google Scholar 

  • Nason JD, Ellstrand NC, Arnold ML (1992) Patterns of hybridization and introgression in populations of oaks, manzanitas, and irises. Amer J Bot 79:101–111

    Article  Google Scholar 

  • Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  • Panseri AF, Seijo JG, Solís Neffa VG (2008) Análisis de la producción y frecuencia de microsporas no reducidas en diploides de Turnera sidoides (Turneraceae). Bol Soc Argent Bot 43:95–101

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic Analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Carney SH (1998) Plant hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridization? Crit Rev Pl Sci 12:213–241

    CAS  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 71–109

    Google Scholar 

  • Rieseberg LH, Baird SJE, Gardner KA (2000) Hybridization, introgression, and linkage evolution. Pl Mol Biol 42:205–224

    Article  CAS  Google Scholar 

  • Savidan Y, Pernès J (1981) Diploid-tetraploid-dihaploid cycles in the evolution of Panicum maximum Jacq. Evolution 36:596–600

    Article  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SS, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2004) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analyses. Amer J Bot 92:142–166

    Article  Google Scholar 

  • Shore JS, Barrett SCH (1985) Morphological differentiation and crossability among populations of the Turnera ulmifolia L. complex (Turneraceae). Syst Bot 10:308–321

    Article  Google Scholar 

  • Solís Neffa VG (2000) Estudios biosistemáticos en el complejo Turnera sidoides L. (Turneraceae, Leiocarpae). Doctoral Thesis, Universidad Nacional de Córdoba (Argentina)

  • Solís Neffa VG (2010) Geographic patterns of morphological variation in Turnera sidoides L. subsp. pinnatifida (Turneraceae). Pl Syst Evol 284:219–229

    Article  Google Scholar 

  • Solís Neffa VG, Fernández A (2001) Cytogeography of the Turnera sidoides L. complex (Turneraceae, Leiocarpae). Bot J Linn Soc 137:189–196

    Article  Google Scholar 

  • Solís Neffa VG, Panseri AF, Reynoso W, Seijo JG (2004) Variación del color de flores y números cromosómicos en el noroeste del área de distribución de Turnera sidoides (Turneraceae). Bonplandia 13:117–128

    Google Scholar 

  • Solís Neffa VG, Panseri AF, Kovalsky IE, Fernández A (2008) Estudios citogenéticos en híbridos artificiales del complejo Turnera sidoides. BAG XIX (Suplemento): 195–196

  • Speranza PR, Seijo JG, Grela IA, Solís Neffa VG (2007) cpDNA variation in the Turnera sidoides L. complex (Turneraceae): biogeographical implications. J Biogeogr 34:427–436

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Amer Philos Soc 103:231–251

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. E. Arnold, London

    Google Scholar 

  • Stift M, Bregman R, Gerard J, Oostermeijer B, van Tienderen PH (2010) Other tetraploid species and conspecific diploids as sources of genetic variation for an autotetraploid. Amer J Bot 97:1858–1866

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Zohary D, Nur U (1959) Natural triploids in the orchard grass, Dactylis glomerata L., polyploid complex and their significance for gene flow from diploid to tetraploid levels. Evolution 13:311–317

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants of Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT- FONCyT, PICT 14674 and 01-1329; PICTO 07-90), National Research Council of Argentina (CONICET, PIP 5998) and Secretaría General de Ciencia y Técnica (UNNE, PI-013/04 and PI-014/07). E.M.S. Moreno and J.M. Roggero Luque are Doctoral Fellows of CONICET, and V.G. Solís Neffa is a member of the Carrera del Investigador Científico of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana G. Solís Neffa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, E.M.S., Speranza, P.R., Roggero Luque, J.M. et al. Natural hybridization among subspecies of Turnera sidoides L. (Passifloraceae) revealed by morphological and genetic evidence. Plant Syst Evol 301, 883–892 (2015). https://doi.org/10.1007/s00606-014-1122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1122-9

Keywords

Navigation