Skip to main content
Log in

The pattern of genetic diversity within Litsea coreana (Lauraceae) in China: an implication for conservation

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Based on three chloroplast markers (psbA-trnH, trnL-trnF, and trnT-trnL), we identified eight haplotypes in 23 samples of Litsea coreana collected from seven provinces across southern and southwestern China. The Hap6 was the most widely distributed haplotype. The genetic diversity was highest in Sichuan Province and its adjacent regions. Therefore, these regions should be areas of priority for conservation of L. coreana in the future. In addition, our molecular dating analyses indicated that the uplift of the Tibetan Plateau and past climate changes accounted for the diversification of L. coreana in China. Finally, we found that the chemical components of L. coreana were significantly affected by both collection time and postharvest handling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC (2001) Phylogeography. The history and formation of species. President and Fellows of Harvard College. United States of America

  • Bilton DT, Mirol PM, Mascheretti S, Fredga K, Zima J, Searle JB (1998) Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc Royal Soc B Biol Sci 265:1219–1226

    Article  CAS  Google Scholar 

  • Bustamante RO, Walkowiak A, Henriquez CA, Serey I (1996) Bird frugivory and the fate of seeds of Cryptocarya alba (Lauraceae) in the Chilean matorral. Revista Chilena de Historia Natural 69:357–363

    Google Scholar 

  • Byrne M (2008) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quatern Sci Rev 27:2576–2585

    Article  Google Scholar 

  • Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Mo Bot Gard 88:104–134

    Article  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJ (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Datta A, Rawat GS (2008) Dispersal modes and spatial patterns of tree species in a tropical forest in Arunachal Pradesh, northeast India. Trop Conserv Sci 1:163–185

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans Royal Soc London Ser B Biol Sci 359:183–195 discussion 195

    Article  CAS  Google Scholar 

  • Kaneko Y, Lian C, Watanabe S, Shimatani K, Sakio H, Noma N (2012) Development of microsatellites in Machilus thunbergii (Lauraceae), a warm-temperate coastal tree species in Japan. Am J Bot 99:e265–e267

    Article  PubMed  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Li JJ, Wen SX, Zhang QS, Wang FB, Zheng BX, Li BY (1979) A discussion on the period, amplitude and type of the uplift of the Qinghai–Xizang Plateau. Sci China Mathe 22:1314–1328

    Google Scholar 

  • Li S, Pearl DK, Doss H (2000) Phylogenetic tree construction using Markov Chain Montecarlo. J Am Stat Assoc 95:493–508

    Article  Google Scholar 

  • Li JZ, Qiu J, Liao WB, Jin JH (2009) Eocene fossil Alseodaphne from Hainan Island of China and its paleoclimatic implications. Sci China Ser D Earth Sci 52:1537–1542

    Article  CAS  Google Scholar 

  • Long Y, Wan H, Yan F, Xu C, Lei G, Li S, Wang R (2006) Glacial effects on sequence divergence of mitochondrial COII of Polyura eudamippus (Lepidoptera: Nymphalidae) in China. Biochem Genet 44:361–377

    Article  CAS  PubMed  Google Scholar 

  • Parrish J (1993) The paleogeography of the opening South Atlantic. In: George W, Lavocat R (eds) The Africa-South America connection. Clar-endon Press, Oxford, pp 8–27

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Charleston M (2001) TreeEdit Ver 1.0. University of Oxford, Oxford

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer

  • Rohwer JG (2000) Toward a phylogenetic classification of the Lauraceae: evidence from matK Sequences. Syst Bot 25(1):60–71

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120

    Article  CAS  PubMed  Google Scholar 

  • Sclater J, Hellinger S, Trapscott C (1977) The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J Geol 85:509–952

    Article  Google Scholar 

  • Shi YF, Li JJ, Li BY (1998) Uplift and environmental changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guangdong Science and Technology Press, Guangzhou

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Song J, Li B (1746) Jianwei County Annals, vol 1

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland Massachusetts

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang EC, Fan C, Wang G, Shi XH, Chen LZ, Chen ZK (2006) Deformational and geomorphic processes in the Ailao Shan-Diancang Range, West Yunnan. Quat Sci 26:220–227

    CAS  Google Scholar 

  • Wang L, Abbott RJ, Zheng W, Chen P, Wang Y, Liu J (2009) History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol Ecol 18:709–721

    Article  PubMed  Google Scholar 

  • Webb T, Bartlein P (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annu Rev Ecol Syst 23:141–173

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of P. R. China (No. 81072995, No. 81274188). The authors are very grateful to Dr. Jin-feng Chen (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for his valuable scripts to phylogeny construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Han.

Additional information

F. Han and L. Xu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

606_2014_1031_MOESM1_ESM.doc

Supplementary material 1 (DOC 91 kb) Supplementary Doc 1 BI tree based on three chloroplast markers psbA-trnH, trnL-trnF, and trnT-trnL, with eight sequences from Monimiaceae, Hernandiaceae, and Gomortegaceae as outgroups

606_2014_1031_MOESM2_ESM.pdf

Supplementary material 2 (PDF 11 kb) GenBank accession numbers for the psbA-trnH, trnL-trnF, and trnT-trnL markers from Lauraceae

Supplementary material 3 (PDF 8 kb) GenBank accession numbers for ITS from Lauraceae

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, F., Xu, L., Peng, Y. et al. The pattern of genetic diversity within Litsea coreana (Lauraceae) in China: an implication for conservation. Plant Syst Evol 300, 2229–2238 (2014). https://doi.org/10.1007/s00606-014-1031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1031-y

Keywords

Navigation