Skip to main content
Log in

Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Corylus, a member of the birch family Betulaceae, includes several species that are widely distributed throughout temperate regions of the Northern Hemisphere. This study assesses the genetic diversity in 26 international cultivars and 32 accessions of Corylus avellana L. from Portugal: 13 wild genotypes and 19 landraces. The genetic relationships among the 58 hazelnuts (Corylus avellana L.) were analyzed using inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) markers. Eighteen ISSR primers and seven AFLP primer pairs generated a total of 570 unambiguous and repeatable bands, respectively, from which 541 (95.03 %) were polymorphic for both markers. Genetic similarity index values ranged from 0.239 for wild types and cultivars to 0.143 for landraces and wild types. The genetic relationships were presented as a Neighbor-Joining method dendrogram and a two-dimensional principal coordinate analysis (PCoA) plot. The Neighbor-Joining dendrogram showed three main clusters, and the PCoA analysis has shown to be congruent with the hierarchical analysis. Bayesian analysis clustered all individuals into three groups showing a good separation among wild genotypes, landraces and cultivars. The genetic diversity found on wild genotypes and Portuguese landraces may provide relevant information for the diversity conservation and it will be useful in breeding programs and to identify local selections for preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertini E, Torricelli R, Bitocchi E, Raggi L, Marconi G, Pollastri L, Di Minco G, Basttistini A, Papa R, Veronesi F (2011) Structure of genetic diversity in Olea europaea L. cultivars from central Italy. Mol Breed 27:533–547

    Article  Google Scholar 

  • Biswas MK, Chai L, Amar MH, Zhang X, Deng XX (2011) Comparative analysis of genetic diversity in Citrus germplasm collection using AFLP, SSAP. SAMPL and SSR markers. Sci Hortic 129(4):798–803

    Article  CAS  Google Scholar 

  • Boccacci P, Botta R (2009) Investigating the origin of hazelnut (Corylus avellana L.) cultivars using chloroplast microsatellites. Genet Resour Crop Evol 56:851–859

    Article  CAS  Google Scholar 

  • Boccacci P, Rovira Botta M (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in northeastern Spain. HortScience 43:667–672

    Google Scholar 

  • Boccacci P, Akkak A, Botta R (2006) DNA typing and genetic relations among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome 49:598–611

    Article  PubMed  CAS  Google Scholar 

  • Boccacci P, Aramini M, Valentini N et al (2013) Molecular and morphological diversity of on-farm hazelnut (Corylus avellana L.) landraces from southern Europe and their role in the origin and diffusion of cultivated germplasm. Tree Gene Genom. doi:10.1007/s11295-013-0651-7

    Google Scholar 

  • Campa A, Trabanco N, Pérez-Vega E, Rovira M, Ferreira JJ (2011) Genetic relationship between cultivated and wild hazelnuts (Corylus avellana L.) collected in northern Spain. Plant Breed 130:360–366

    Article  CAS  Google Scholar 

  • Chen H, Mehlenbacher SA, Smith DC (2005) AFLP markers linked to eastern filbert blight resistance from OSU 408.040 hazelnut. J Am Soc Hort Sci 130:412–417

    CAS  Google Scholar 

  • Erfatpour M, Hamidogli Y, Kaviani B, Fatahi R, Falahati M, Javadi D, Hashemabadi D (2011) Assessment of genetic diversity among some Iranian hazelnut genotypes using SSR markers. Aust J Crop Sci 5(10):1286–1291

    CAS  Google Scholar 

  • Ergül A, Kazan K, Aras S, Cevik V, Celik H, Söylemezoğlu G (2006) AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome 49(5):467–475

    Article  PubMed  CAS  Google Scholar 

  • Essadki M, Ouazzani N, Lumaret R, Moumni M (2006) ISSR variation in olive-tree cultivars from Morocco and other western countries of the Mediterranean Basin. Gene Resour Crop Evol 53:475–482

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Slatkin M (1992) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fang DQ, Roose ML (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417

    Article  CAS  Google Scholar 

  • FAO Production Yearbook (2011) http://faostat.fao.org/site/339/default.aspx Accessed 26 March 2013

  • Ferrari M, Gori M, Monnanni R, Buiatti M, Scarascia Mugnozza GT, De Pace C (2004) DNA fingerprinting of Corylus Avellana L. accessions revealed by AFLP molecular markers. Acta Hort 686:125–134

    Google Scholar 

  • Ferreira JJ, Garcia-González C, Tous J, Rovira M (2010) Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern Spain. Plant Breed 129:435–441

    Article  CAS  Google Scholar 

  • Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot 87:909–919

    Article  PubMed  CAS  Google Scholar 

  • Galderisi U, Cipollaro M, Bernardo GD, De Masi L, Galano G, Cascino A (1999) Identification of hazelnut (Corylus avellana) cultivars by RAPD analysis. Plant Cell Rep 18:652–655

    Article  CAS  Google Scholar 

  • Gökirmak T, Mehlenbacher SA, Bassil NV (2009) Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genet Resour Crop Evol 56:147–172

    Article  CAS  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Guo X, Elston RC (1999) Linkage information content of polymorphic genetic markers. Hum Hered 49(2):112–118

    Article  PubMed  CAS  Google Scholar 

  • Gürcan K, Mehlenbacher SA (2010) Development of microsatellite marker loci for European hazelnut (Corylus avellana L.) from ISSR fragments. Mol Breed 26(3):551–559

    Google Scholar 

  • Kafkas S, Ozkan H, Ak BE, Acar I, Atli HS, Koyuncu S (2006) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR and RAPD markers. J Amer Soc Hort Sci 131:522–529

    CAS  Google Scholar 

  • Kafkas S, Dogan Y, Sabir A, Turan A, Seker H (2009) Genetic characterization of Hazelnut (Corylus avellana L.) cultivars from Turkey using molecular markers. HortScience 44(6):1557–1561

    Google Scholar 

  • Kasapligil B (1972) A bibliography on Corylus (Betulaceae) with annotations. Annu Rep North Nut Growers Assoc 63:107–162

    Google Scholar 

  • Kuster H (2000) The history and culture of food and drink in Europe: northern Europe–Germany and surrounding regions. In: Kiple KF, Ornelas KC (eds) The Cambridge world history of food, vol 2. Cambridge University Press, Cambridge, pp 1226–1232

    Google Scholar 

  • Lagerstedt HB (1975) Filberts. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 456–489

    Google Scholar 

  • Leinemann L, Steiner W, Hosius B, Kuchma O, Arenhövel W, Fussi B, Haase B, Kätzel R, Rogge M, Finkeldey R (2013) Genetic variation of chloroplast and nuclear markers in natural populations of hazelnut (Corylus avellana L.) in Germany. Plant Syst Evol 299:369–378

    Article  CAS  Google Scholar 

  • Martins S, Simões F, Mendonça D, Matos J, Silva AP, Carnide V (2012) Chloroplast SSR genetic diversity indicates a refuge for Corylus avellana in northern Portugal. Genet Resour Crop Evol 60(4):1289–1295. doi:10.1007/s10722-012-9919-2

    Article  CAS  Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • Mehlenbacher SA (1991) Hazelnuts (Corylus). Genetic resources of temperate fruit and nut crops. Acta Hort 290:791–836

    Google Scholar 

  • Mehlenbacher SA (1997) Revised dominance hierarchy for S alleles in Corylus avellana L. Theor Appl Genet 94:360–366

    Article  Google Scholar 

  • Mehlenbacher SA, Brown RN, Davis JW, Chen H, Bassil NV, Smith DC, Kubisiak TL (2004) RAPD markers linked to eastern filbert blight resistance in Corylus avellana. Theor Appl Genet 108:651–656

    Article  PubMed  CAS  Google Scholar 

  • Miaja ML, Vallania R, Me C, Akkak A, Nassi O, Lepori G (2001) Varietal characterization in hazelnut by RAPD markers. Acta Hort 556:247–250

    CAS  Google Scholar 

  • Milligan BG, Leebens-Mack J, Strand AE (1994) Conservation genetics: beyond the maintenance of marker diversity. Mol Ecol 3(4):423–435. doi:10.1111/j.1365-294X.1994.tb00082.x

    Article  Google Scholar 

  • Moreno S, Martin JP, Ortiz JM (1998) Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 101:117–125

    Article  CAS  Google Scholar 

  • Nagy S, Poczai P, Cernák I, Gorji AM, Hegedús G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50(9–10):670–672

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics 89:583–590

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Patzak J (2001) Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica 121:129–138

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin. Accessed 04 Nov 2013

  • Pomper KW, Azarenko AN, Bassil NV, Davis JW, Mehlenbacher SA (1998) Identification of random amplified polymorphic DNA (RAPD) markers for self-incompatibility alleles in Corylus avellana L. Theor Appl Genet 97:479–487

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey MM, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. User manual ver 2.000. Genetics and Biometry Lab, Dept of Anthropology, University of Geneva, Geneva

    Google Scholar 

  • Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    Article  Google Scholar 

  • Talhinhas P, Neves-Martins J, Leitao J (2003) AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp. Plant Breed 122:507–510

    Article  CAS  Google Scholar 

  • Tallantire PA (2002) The early-holocene spread of hazel (Corylus avellana L.) in Europe north and west of the Alps: an ecological hypothesis. Holocene 12:81–96. doi:10.1191/0959683602hl523rr

    Article  Google Scholar 

  • Tasias Valls J (1975) El avellano en la provincia de Tarragona. Excma Diputación Provincial de Tarragona, Tarragona

    Google Scholar 

  • Thompson MM, Lagerstedt HB, Mehlenbacher SA (1996) Hazelnuts. In: Janick J, Moore JN (eds) Fruit breeding nuts, vol 3. John Wiley & Sons, New York, pp 125–184

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kulper M, Zabeu M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 21(23):4407–4414

    Article  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations. Variability within and among natural populations, 4th edn. University of Chicago Press, Chicago

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE 32-version 1.31. Population Genetics Software http://www.ualberta.ca/~fyeh/fyeh/

Download references

Acknowledgments

This work was supported by the PhD grant SFRH/BD/40686/2007 from the Portuguese Foundation for Science and Technology (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, S., Simões, F., Matos, J. et al. Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers. Plant Syst Evol 300, 1035–1046 (2014). https://doi.org/10.1007/s00606-013-0942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0942-3

Keywords

Navigation