Skip to main content
Log in

Normalising graphs of groups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We discuss a partial normalisation of a finite graph of finite groups \((\Gamma (-), X)\) which leaves invariant the fundamental group. In conjunction with an easy graph-theoretic result, this provides a flexible and rather useful tool in the study of finitely generated virtually free groups. Applications discussed here include: (1) an important inequality for the number of edges in a Stallings decomposition \(\Gamma \cong \pi _1(\Gamma (-), X)\) of a finitely generated virtually free group, (2) the proof of equivalence of a number of conditions for such a group to be ‘large’, as well as (3) the classification up to isomorphism of virtually free groups of (free) rank 2. We also discuss some number-theoretic consequences of the last result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Sect. 2 for the definition of the free rank.

  2. See [13, Cor. 1], or [4, Prop. 1] for a more general result.

  3. The notation used in Eq. (3.1) follows Serre; see Déf. 8 in [19, Sec. 4.4].

References

  1. Brown, K.S.: Cohomology of groups. Springer, New York (1982)

    Book  MATH  Google Scholar 

  2. Cohen, D.E.: Ends and free products of groups. Math. Z. 114, 9–18 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, D.E.: Groups of cohomological dimension one. Lecture notes in mathematics. Springer, Berlin (1972)

    Book  Google Scholar 

  4. Dress, A., Müller, T.W.: Decomposable functors and the exponential principle. Adv. Math. 129, 188–221 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edjvet, M., Pride, S.J.: The concept of “largeness” in group theory II. In: Proceedings of groups-Korea 1983, lecture notes in mathematics, vol. 1098, Springer, Berlin, pp. 29–54 (1985)

  6. Freudenthal, H.: Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv. 17, 1–38 (1944)

    Article  MATH  Google Scholar 

  7. Hopf, H.: Enden offener Räume und unendliche diskontinuierliche Gruppen. Comment. Math. Helv. 16, 81–100 (1943)

    Article  MATH  Google Scholar 

  8. Krattenthaler, C., Müller, T.W.: Periodicity of free subgroup numbers modulo prime powers. J. Algebra 452, 372–389 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krattenthaler, C., Müller, T.W.: Free subgroup numbers modulo prime powers: the non-periodic case, preprint; arXiv:1602.08723

  10. Lubotzky, A., Segal, D.: Subgroup growth, progress in mathematics, vol. 212. Birkhäuser, Berlin (2003)

    Book  MATH  Google Scholar 

  11. Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Springer, New York (1977)

    MATH  Google Scholar 

  12. Müller, T.W.: A group-theoretical generalization of Pascal’s triangle. Europ. J. Combinatorics 12, 43–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, T.W.: Combinatorial aspects of finitely generated virtually free groups. J. Lond. Math. Soc. 44, 75–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Newman, M.: Asymptotic formulas related to free products of cyclic groups. Math. Comp. 30, 838–846 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pride, S.J.: The concept of largeness in group theory. Word problems II, pp. 299–335. North Holland Publishing Company, Amsterdam (1980)

    Google Scholar 

  16. Schreier, O.: Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hamburg 5, 161–183 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  17. Segal, D.: Subgroups of finite index in soluble groups I. In: Groups St Andrews 1985, London mathematical society lecture note series, vol. 121, Cambridge University Press, Cambridge, pp 307–314 (1986)

  18. Serre, J.-P.: Cohomologie des groupes discrets. In: Prospects in mathematics, Annals of Mathemathics Studies, vol. 70, Princeton University Press, pp 77–169 (1971)

  19. Serre, J.-P.: Arbres, amalgames, \(SL_2\), Astérisque, vol. 46. Société mathématique de France, Paris (1977)

    Google Scholar 

  20. Specker, E.: Die erste Cohomologiegruppe von Überlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. Comment. Math. Helv. 23, 303–333 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stallings, J.: On torsion-free groups with infinitely many ends. Ann. Math. 88, 312–334 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wall, C.T.C.: Poincaré complexes: I. Ann. Math. 86, 213–245 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller.

Additional information

Communicated by J. S. Wilson.

C. Krattenthaler research partially supported by the Austrian Science Foundation FWF, grant S50-N15, in the framework of the Special Research Program “Algorithmic and Enumerative Combinatorics”. T. Müller research supported by Lise Meitner Grant M1661-N25 of the Austrian Science Foundation FWF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krattenthaler, C., Müller, T. Normalising graphs of groups. Monatsh Math 185, 269–286 (2018). https://doi.org/10.1007/s00605-016-0992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0992-z

Keywords

Mathematics Subject Classification

Navigation