Skip to main content
Log in

Operator renewal theory for continuous time dynamical systems with finite and infinite measure

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We develop operator renewal theory for flows and apply this to obtain results on mixing and rates of mixing for a large class of finite and infinite measure semiflows. Examples of systems covered by our results include suspensions over parabolic rational maps of the complex plane, and nonuniformly expanding semiflows with indifferent periodic orbits. In the finite measure case, the emphasis is on obtaining sharp rates of decorrelations, extending results of Gouëzel and Sarig from the discrete time setting to continuous time. In the infinite measure case, the primary question is to prove results on mixing itself, extending our results in the discrete time setting. In some cases, we obtain also higher order asymptotics and rates of mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, J.: An Introduction to Infinite Ergodic Theory. Math. Surveys Monogr. 50, Amer. Math. Soc. (1997)

  2. Aaronson, J., Denker, M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1, 193–237 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aaronson, J., Denker, M., Urbański, M.: Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Am. Math. Soc. 337, 495–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackwell, D.: A renewal theorem. Duke Math. J. 15, 145–150 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bingham, N., Goldie, C., Teugels, J.: Regular variation. Encyclopedia of Mathematics and its Applications. pp. 27. Cambridge University Press (1987)

  6. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math, vol. 470. Springer, Berlin (1975)

  7. Bruin, H., Holland, M., Melbourne, I.: Subexponential decay of correlations for compact group extensions of nonuniformly expanding systems. Ergod. Theory Dyn. Syst. 25, 1719–1738 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolgopyat, D.: On the decay of correlations in Anosov flows. Ann. Math. 147, 357–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolgopyat, D.: Prevalence of rapid mixing in hyperbolic flows. Ergod. Theory Dyn. Syst. 18, 1097–1114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erickson, K.B.: Strong renewal theorems with infinite mean. Trans. Am. Math. Soc. 151, 263–291 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1966)

    MATH  Google Scholar 

  12. Field, M.J., Melbourne, I., Török, A.: Stability of mixing and rapid mixing for hyperbolic flows. Ann. Math. 166, 269–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frenk, J.B.G.: On Banach Algebras, Renewal Measures and Regenerative Processes. CWI Tract. pp. 38. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987

  14. Garsia, A., Lamperti, J.: A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37, 221–234 (1962/1963)

  15. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128, 82–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gouëzel, S.: Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes. Ph. D. Thesis, Ecole Normale Supérieure (2004)

  17. Gouëzel, S.: Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139, 29–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gouëzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs–Markov maps. Israel J. Math. 180, 1–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gouëzel, S.: Correlation asymptotics from large deviations in dynamical systems with infinite measure. Colloq. Math. 125, 193–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, H.: Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergod. Theory Dyn. Syst. 24, 495–524 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katznelson, Y.: An Introduction to Harmonic Analysis. Dover, New York (1976)

    MATH  Google Scholar 

  22. Kingman, J.F.C.: Ergodic properties of continuous-time Markov processes and their discrete skeletons. Proc. London Math. Soc. 13(3), 593–604 (1963)

  23. Kingman, J.F.C.: The stochastic theory of regenerative events. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 180–224 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liverani, C.: On contact Anosov flows. Ann. Math. 159, 1275–1312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19, 671–685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Melbourne, I.: Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Am. Math. Soc. 359, 2421–2441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melbourne, I.: Decay of correlations for slowly mixing flows. Proc. Lond. Math. Soc. 98, 163–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Melbourne, I., Terhesiu, D.: Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189, 61–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Melbourne, I., Terhesiu, D.: First and higher order uniform dual ergodic theorems for dynamical systems with infinite measure. Israel J. Math. 194, 793–830 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Melbourne, I., Terhesiu, D.: Decay of correlations for nonuniformly expanding systems with general return times. Ergod. Theory Dyn. Syst. 34, 893–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  32. Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Math. and its Applications. pp. 5. Addison Wesley, Massachusetts (1978)

  33. Sarig, O.M.: Subexponential decay of correlations. Invent. Math. 150, 629–653 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sinaĭ, Y.G.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–70 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. Terhesiu, D.: Improved mixing rates for infinite measure preserving systems. Ergod. Theory Dyn. Syst. 35, 585–614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Terhesiu, D.: Mixing rates for intermittent maps of high exponent. Probab. Theory Relat. Fields 1–36 (2015). doi:10.1007/s00440-015-0690-0

  37. Thaler, M.: A limit theorem for the Perron–Frobenius operator of transformations on \([0,1]\) with indifferent fixed points. Israel J. Math. 91, 111–127 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Young, L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of IM was supported in part by EPSRC Grant EP/F031807/1 (held at the University of Surrey) and by the European Advanced Grant StochExtHomog (ERC AdG 320977). The research of DT was supported in part by the European Advanced Grant MALADY (ERC AdG 246953). IM and DT are grateful to the Centre International de Rencontres Mathématiques for funding the Research in Pairs topic “Infinite Ergodic Theory”, Luminy, August 2012, where part of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Terhesiu.

Additional information

Communicated by A. Constantin.

Wiener lemma

Wiener lemma

This appendix contains material about a version of the Wiener lemma that is required in Sect. 13. We have chosen the notation here to conform with standard conventions in Fourier analysis. (In the application of this material, the roles of \(f:{\mathbb R}\rightarrow {\mathbb C}\) and its Fourier transform \(\hat{f}\) is reversed, with b and t playing the role of x and \(\xi \) respectively.)

Let \({\mathbb A}\) be the Banach algebra of \(2\pi \)-periodic continuous functions \(f:{\mathbb R}\rightarrow {\mathbb C}\) such that their Fourier coefficients \(\hat{f}_n\) are absolutely summable, with norm \(\Vert f\Vert _{{\mathbb A}}=\sum _{n\in {\mathbb Z}}|\hat{f}_n|\). Similarly, let \(\mathcal {R}\) be the Banach algebra of continuous functions \(f:{\mathbb R}\rightarrow {\mathbb C}\) such that their Fourier transform \(\hat{f}:{\mathbb R}\rightarrow {\mathbb C}\) lies in \(L^1({\mathbb R})\), with norm \(\Vert f\Vert _{\mathcal {R}}=\int _{-\infty }^\infty |\hat{f}(\xi )|\,d\xi \).

Given \(\beta >1\), we define the Banach algebra \({\mathbb A}_\beta =\{f\in {\mathbb A}:\sup _{n\in {\mathbb Z}}|n|^\beta |\hat{f}_n|<\infty \}\) with norm \(\Vert f\Vert _{{\mathbb A}_\beta }=\sum _{n\in {\mathbb Z}}|\hat{f}_n|+\sup _{n\in {\mathbb Z}}|n|^\beta |\hat{f}_n|\). Similarly, we define the Banach algebra \(\mathcal {R}_\beta =\{f\in \mathcal {R}:\sup _{\xi \in {\mathbb R}}|\xi |^\beta |\hat{f}(\xi )|<\infty \}\) with norm \(\Vert f\Vert _{\mathcal {R}_\beta }=\int _{-\infty }^\infty |\hat{f}(\xi )|\,d\xi +\sup _{\xi \in {\mathbb R}}|\xi |^\beta |\hat{f}(\xi )|\).

The following Wiener lemmas are standard.

Lemma 16.1

Let \(\beta >1\) and let \(f,f_1\in \mathcal {A}_\beta \). Suppose that f is bounded away from zero on the support of \(f_1\).

Then there exists \(g\in \mathcal {A}_\beta \) such that \(f_1=fg\).

Lemma 16.2

Let \(\beta >1\) and let \(f,f_1\in \mathcal {R}_\beta \). Suppose \(f_1\) is compactly supported and that f is bounded away from zero on the support of \(f_1\).

Then there exists \(g\in \mathcal {R}_\beta \) such that \(f_1=fg\).

A statement and proof of Lemma 16.1 can be found in [13, Theorem 1.2.12]. In this paper, we require Lemma 16.2, but we could not find it stated in the literature. Hence we provide here a proof of Lemma 16.2, using a standard argument to reduce to Lemma 16.1.

Lemma 16.3

Let \(\epsilon >0\). Suppose that \(f:{\mathbb R}\rightarrow {\mathbb C}\) is a continuous function with \({\text {supp}}f\subset [-\pi +\epsilon ,\pi -\epsilon ]\). Let \(h:{\mathbb R}\rightarrow {\mathbb C}\) denote the \(2\pi \)-periodic continuous function such that \(h|_{[-\pi ,\pi ]}=f|_{[-\pi ,\pi ]}\). Then \(f\in \mathcal {R}_\beta \) if and only if \(h\in {\mathbb A}_\beta \).

Proof

(cf. [21, Theorem 6.2, Ch. VIII, p. 242]) Fix a \(C^\infty \) function \(\psi :{\mathbb R}\rightarrow {\mathbb R}\) supported in \([-\pi +\epsilon /2,\pi -\epsilon /2]\) and such that \(\psi \equiv 1\) on \([-\pi +\epsilon ,\pi -\epsilon ]\). For \(\alpha \in [-1,1]\) let \(\psi _\alpha (x)=e^{i\alpha x}\psi (x)\). Then there is a constant \(K_0>0\) such that

$$\begin{aligned} |(\widehat{\psi }_\alpha )_n|\le K_0n^{-\beta },\quad \text {for all}\quad \alpha \in [-1,1], n\in {\mathbb Z}. \end{aligned}$$

In particular, \(\psi _\alpha \in {\mathbb A}_\beta \) for all \(\alpha \) and \(\sup _{|\alpha |\le 1}\Vert \psi _\alpha \Vert _{{\mathbb A}_\beta }<\infty \).

Define \(h_\alpha (x)=e^{i\alpha x}h(x)\). If \(h\in {\mathbb A}_\beta \), then \(h_\alpha =h\psi _\alpha \in {\mathbb A}_\beta \) and there is a constant \(K>0\) such that \(\Vert h_\alpha \Vert _{{\mathbb A}_\beta }\le K\Vert h\Vert _{{\mathbb A}_\beta }\) for all \(\alpha \in [-1,1]\).

Now,

$$\begin{aligned} (\widehat{h_\alpha })_n=\frac{1}{2\pi }\int _{-\pi }^\pi e^{i\alpha x}h(x)e^{-inx}\,dx= \frac{1}{2\pi }\int _{-\infty }^\infty f(x)e^{-i(n-\alpha ) x}\,dx= \frac{1}{2\pi }\hat{f}(n-\alpha ). \end{aligned}$$

Hence \(\int _{n-1}^n|\hat{f}(\xi )|\,d\xi =\int _0^1|\hat{f}(n-\alpha )|\,d\alpha =2\pi \int _0^1|(\widehat{h_\alpha })_n|\,d\alpha \). It follows that

$$\begin{aligned} \Vert f\Vert _{\mathcal {R}}=2\pi \sum _{n=-\infty }^\infty \int _0^1 |(\widehat{h_\alpha })_n|\,d\alpha =2\pi \int _0^1\Vert h_\alpha \Vert _{{\mathbb A}}\,d\alpha \le 2\pi K\Vert h\Vert _{{\mathbb A}_\beta }. \end{aligned}$$
(16.1)

Next, we observe that any \(\xi \in {\mathbb R}\) can be expressed as \(\xi =(n-\alpha ){\text {sgn}}\xi \) where \(n\ge 1\), \(\alpha \in [0,1]\). Hence

$$\begin{aligned} \nonumber&\sup _{\xi \in {\mathbb R}}|\xi |^\beta |\hat{f}(\xi )|\nonumber \\&\quad =\sup _{n\ge 1,\,\alpha \in [0,1]} (n-\alpha )^\beta |\hat{f}((n-\alpha ){\text {sgn}}\xi )| \le \sup _{n\ge 1,\,\alpha \in [0,1]} n^\beta |\hat{f}((n-\alpha ){\text {sgn}}\xi )| \nonumber \\&\quad \le \sup _{n\in {\mathbb Z},\,\alpha \in [-1,1]} |n|^\beta |\hat{f}(n-\alpha )| = 2\pi \sup _{n\in {\mathbb Z},\,\alpha \in [-1,1]} |n|^\beta |(\widehat{h_\alpha })_n| \nonumber \\&\quad \le 2\pi \sup _{\alpha \in [-1,1]} \Vert h_\alpha \Vert _{A_\beta } \le 2\pi K\Vert h\Vert _{A_\beta }. \end{aligned}$$
(16.2)

Combining (16.1) and (16.2), we obtain that \(\Vert f\Vert _{\mathcal {R}_\beta }\le 4\pi K\Vert h\Vert _{A_\beta }\). Hence we have shown that \(h\in {\mathbb A}_\beta \) implies that \(f\in \mathcal {R}_\beta \).

Conversely, suppose \(f\in \mathcal {R}_\beta \). Then \(\sum _{n\in {\mathbb Z}}\int _0^1|\hat{f}(n-\alpha )|\,d\alpha =\int _{-\infty }^\infty |\hat{f}(\xi )|\,d\xi <\infty \) and it follows from Fubini that \(\sum _{n\in {\mathbb Z}}|\hat{f}(n-\alpha )|<\infty \) for almost every \(\alpha \). Fix such an \(\alpha \). Then \(\sum _{n\in {\mathbb Z}}|(\widehat{h_\alpha })_n|=(1/2\pi ) \sum _{n\in {\mathbb Z}}|\hat{f}(n-\alpha )|<\infty \) so that \(h_\alpha \in {\mathbb A}\). Hence \(h=(h_\alpha )_{-\alpha }\in {\mathbb A}\). Moreover,

$$\begin{aligned} \sup _{n\in {\mathbb Z}}|n|^\beta |\hat{h}_n| =(1/2\pi ) \sup _{n\in {\mathbb Z}}|n|^\beta |\hat{f}(n)| \le (1/2\pi ) \sup _{\xi \in {\mathbb R}}|\xi |^\beta |\hat{f}(\xi )|<\infty , \end{aligned}$$

so that \(h\in {\mathbb A}_\beta \). \(\square \)

Proof of Lemma 16.2

(cf. [21, Lemma 6.3, Ch. VIII, p. 242]) We make the standard abuse of notation that functions on \({\mathbb R}\) supported on a closed subset of \((-\pi ,\pi )\) can be identified with \(2\pi \)-periodic functions on \({\mathbb R}\). In particular, the conclusion of Lemma 16.3 becomes \(f\in \mathcal {R}_\beta \) if and only if \(f\in {\mathbb A}_\beta \).

Without loss, we can suppose that \({\text {supp}}f_1\subset [-2,2]\). By Lemma 16.3, \(f_1\in {\mathbb A}_\beta \).

Choose a \(C^\infty \) function \(\chi :{\mathbb R}\rightarrow {\mathbb R}\) such that \({\text {supp}}\chi \subset [-3,3]\) and \(\chi \equiv 1\) on \([-2,2]\). Then \(\chi \in \mathcal {A}_\beta \) and \(\chi \in \mathcal {R}_\beta \). In particular \(\chi f\in \mathcal {R}_\beta \), and by Lemma 16.3 \(\chi f\in {\mathbb A}_\beta \).

Moreover \(\chi f=f\) on \({\text {supp}}f_1\) and hence is bounded away from zero on \({\text {supp}}f_1\). By Lemma 16.1, there exists \(g_0\in {\mathbb A}_\beta \) such that \(f_1=g_0(\chi f)=(g_0\chi )f\).

Since \(g_0,\chi \in {\mathbb A}_\beta \), we deduce that \(g=g_0\chi \in {\mathbb A}_\beta \). By Lemma 16.3, \(g\in \mathcal {R}_\beta \). Hence \(f_1=gf\) with \(g\in \mathcal {R}_\beta \) as required.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melbourne, I., Terhesiu, D. Operator renewal theory for continuous time dynamical systems with finite and infinite measure. Monatsh Math 182, 377–431 (2017). https://doi.org/10.1007/s00605-016-0922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0922-0

Keywords

Mathematics Subject Classification

Navigation