Skip to main content
Log in

Degenerate principal series representations of \(\mathrm{SO}(p+1,p)\)

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

For \(p\) odd, the Lie group \(G^\sharp =\mathrm{SO}_0(p+1,p+1)\) has a family of complementary series representations realized on the space of real \((p+1)\times (p+1)\) skew symmetric matrices, similar to the Stein’s complementary series for \(\mathrm{SL}(2n, {\mathbb C})\). We consider their restriction on the subgroup \(G_0=\mathrm{SO}_0(p+1,p)\) and prove that they are still irreducible and is equivalent to (a unitarization of) the principal series representation of \(G=\mathrm{SO}(p+1, p)\), and also irreducible under a maximal parabolic subgroup of \(G\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldoni Silva, M., Knapp, A.W.: Unitary representations induced from maximal parabolic subgroups. J. Funct. Anal. 69, 21–120 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barchini,L., Sepanski, M., Zierau, R.: Positivity of zeta distributions and small unitary representations. In: The ubiquitous heat kernel, Contemporary Mathematics, vol. 398, pp. 1–46. American Mathematical Society (2006)

  3. Baruch, E.M.: A proof of Kirillov’s conjecture. Ann. Math. 158, 207–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, C., Jenkins, J., Ratcliff, G.: On Gelfand pairs associated with solvable Lie groups. Trans. Am. Math. Soc. 321(1), 85–116 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Bopp, N., Rubenthaler, H.: Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Amer. Math. Soc. vol. 174, No. 821. American Mathematical Society (2005)

  6. Corwin, L., Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Dixmier, J.: Les \(C^\ast \)-algébres et leurs Représentations, 2nd edn. Gauthier-Villars, Paris (1964)

    Google Scholar 

  8. Fischer, V.: Etude de deux classes de groupe nilpotents de pas deux. PhD thesis Orsay Paris-Sud XI. http://arxiv.org/abs/0810.4173

  9. Folland, G.B.: Harmonic analysis in phase space. In: Annals of Mathematics Studies, vol 122. Princeton University Press, Princeton, NJ (1989)

  10. Gelbart, S.: A theory of Stiefel harmonics. Trans. Am. Math. Soc. 192, 29–50 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Helgason, S.: Groups and geometric analysis. Academic Press, New York (1984)

    MATH  Google Scholar 

  12. Howe, R., Lee, S.T.: Degenerate principal series representations of \(\text{ GL }_{n} ({\bf C})\) and \(\text{ GL }_{n} ({\bf R})\). J. Funct. Anal. 166(2), 244–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kobayashi, T.: Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs. Representation Theory and Automorphic Forms, Progress in Mathematics, pp. 45–109. Birkhuser, Boston (2008)

    Google Scholar 

  14. Kobayashi, T.: Branching problems of Zuckerman derived functor modules. Representation theory and mathematical physics, Contemporary Mathematics, vol 557, American Mathematical Society, Providence, RI, pp 23–40 (2011)

  15. Johnson, K.D.: Degenerate principal series and compact groups. Math. Ann. 287, 703–718 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knapp, A.: Representation theory of semisimple groups. Princeton University Press, Princeton (1986)

    MATH  Google Scholar 

  17. Lee, S.T., Loke, H.Y.: Degenerate principal series representations of \(U(p, q)\) and \(Spin(p, q)\). Compositio Math. 132(3), 311–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Molčanov, V.F.: Restriction of a representation of the complementary series of the pseudo-orthogonal group to a pseudo-orthogonal group of lower dimension. Dokl. Akad. Nauk SSSR 237(4), 782–785 (1977). [English translation: Soviet Math. Dokl. 18(6), 1493–1497 (1977)]

    MathSciNet  Google Scholar 

  19. Neretin, YuA, Olshanski, G.I.: Boundary values of holomorphic functions, singular unitary representations of the groups \(\text{ O }(p, q)\) and their limits as \(q\rightarrow \infty \). J. Math. Sci. (New York) 87(6), 3983–4035 (1997)

    Article  MathSciNet  Google Scholar 

  20. Ørsted, B., Zhang, G.: Generalized principal series representations and tube domains. Duke Math. J 78, 335–357 (1995)

  21. Sahi, S.: Jordan algebras and degenerate principal series. J. Reine Angew. Math. 462, 1–18 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Sahi, S., Stein, E.M.: Analysis in matrix space and Speh’s representations. Invent. Math. 101, 379–393 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Speh, B., Venkataramana, T.: Discrete components of some complementary series representations Indian. J. Pure Appl. Math. 41(1), 145–151 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematics Series. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  25. Strichartz, R.S.: \(L^p\) harmonic analysis and Radon transforms on the Heisenberg group. J. Funct. Anal 96, 350–406 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thangavelu, S.: An introduction to the uncertainty principle: Hardy’s theorem on Lie groups. Progress in Mathematics. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  27. Vinberg, E., Kimelfeld, B.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl. 12, 168–174 (1978)

    Article  MathSciNet  Google Scholar 

  28. Wallach, N.: Real reductive groups II. Pure and Applied Mathematics. Academic Press, New York (1992)

    MATH  Google Scholar 

  29. Zhang, G.: Jordan algebras and generalized principal series representations. Math. Ann. 302, 773–786 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, G.: Degenerate principal series representations and their holomorphic extensions. Adv. Math. 223(5), 1495–1520 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Professors Pierre Cartier, Jacques Faraut and Jean Ludwig for some fruitful discussions. We are grateful to Professor Robert Stanton for drawing us attention to the work [1]. The authors would also like to thank the referee for the valuable comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronique Fischer.

Additional information

Communicated by K. Gröchenig.

Genkai Zhang acknowledges the partially support by Swedish Research Council (VR). Veronique Fischer acknowledges the support of the London Mathematical Society (LMS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, V., Zhang, G. Degenerate principal series representations of \(\mathrm{SO}(p+1,p)\) . Monatsh Math 176, 87–105 (2015). https://doi.org/10.1007/s00605-014-0671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0671-x

Keywords

Mathematics Subject Classification

Navigation