Skip to main content
Log in

On the asymptotic behavior of certain solutions of the Dirichlet problem for the equation \(-\Delta _p u=\lambda |u|^{q-2}u\)

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let \(p>1\). We study the behavior of certain positive and nodal solutions of the problem

$$\begin{aligned} \left\{ \,\, \begin{array}{lll} -\Delta _p u=\lambda |u|^{q-2}u \ \ &{}\mathrm{in} \ \ &{}{\varOmega } \\ u=0 &{}\mathrm{in} \ \ &{}\partial {\varOmega } \end{array}\right. \end{aligned}$$

on varying of the parameters \(\lambda >0\) and \(q>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adimurthi, S., Yadava, L.: An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem. Arch. Rational Mech. Anal. 127(3), 219–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agapito, J.C.C., Paredes, L.I., Rey, R.M., Sy, P.W.: On the asymptotic behaviors of the positive solution of \(\Delta _pu+|u|^{q-2}u=0\). Taiwanese J. Math. 6(4), 555–563 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Anello, G.: On the Dirichlet problem involving the equation \(-\Delta _p u=\lambda u^{s-1}\). Nonlinear Anal. 70, 2060–2066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azorero, J.G., Alonso, I.P.: On limits of solutions of elliptic problem with nearly critical exponent. Comm. Part. Diff. Eq. 17, 2113–2126 (1992)

    Article  MATH  Google Scholar 

  5. Dìaz, J.I., Saa, J.E.: Existence et unicitè de solutions positives pour certaines quations elliptiques quasilinèaires. C.R. Acad. Sci., Paris., Sèr. I, Math. 305, 521–524 (1987)

    MATH  Google Scholar 

  6. Grumiau, C., Parini, E.: On the asymptotics of solutions of the Lane-Emden problem for the \(p\)-Laplacian. Arch. Math. (Basel) 91(4), 354–365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, Y.X.: A note on the asymptotic behavior of positive solutions for some elliptic equation. Nonlinear Anal. 29, 533–537 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Idogawa, T., Otani, M.: The first eigenvalues of some abstract elliptic operators. Funkcial. Ekvac. 38, 1–9 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ôtani, M.: A remark on certain nonlinear elliptic equations. In: Proceedings of the Faculty of Science, vol 19. Tokay University, pp 23–28 (1984)

Download references

Acknowledgments

The authors wish to thank the anonymous referee for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Anello.

Additional information

Communicated by J. Escher.

Appendix

Appendix

Let us consider the well known \(beta\)-function \(\beta (x,y)=\int _0^1t^{x-1}(1-t)^{y-1}\) defined for \(x,y\in ]0,+\infty [\). In what follows, we will make use of the identity

$$\begin{aligned} \beta (1+x,1+y)=\frac{x}{1+x+y}\beta (x,y), \ \ \ \mathrm{for \ all} \ \ x,y\in ]0,+\infty [. \end{aligned}$$
(34)

We want to derive the explicit expression of the unique positive solution of problem \((P)\) in the one-dimensionale case. For simplicity, we assume \(\lambda =1\).

For \({\varOmega }=]a,b[\), with \(a,b\in \mathbb{R }\) and \(a<b\), the positive (and symmetric) solution of problem \((P)\) satisfies

$$\begin{aligned} \left\{ \,\, \begin{array}{lll} -(|u'|^{p-2}u')'=u^{q-1} \ \ &{}\mathrm{in} \ \ &{}]a,b[ \\ u>0 &{}\mathrm{in} \ \ &{}]a,b[\\ u(a)=u(b)=0 &{} \ \ &{} \end{array}\right. . \end{aligned}$$

Set \(t_0=\frac{a+b}{2}\) and multiply the equation \(-(|u'|^{p-2}u')'=u^{q-1}\) by \(u'\). Then, integrating on \([t,t_0]\) with \(a<t<t_0\), we obtain

$$\begin{aligned} \frac{p-1}{p}(u'(t))^p=\frac{1}{q}(C^q-u(t)^q) \end{aligned}$$
(35)

where \(C=\max _{[a,b]}u=u\left( \frac{a+b}{2}\right) \). Hence,

$$\begin{aligned} \int _0^{\frac{u(t)}{C}}\frac{dz}{(1-z^q)^{\frac{1}{p}}}=\frac{\sigma }{q} C^{\frac{q}{p}-1}(t-a), \ \ \ \mathrm{for \ all} \ \ t\in [a,t_0], \end{aligned}$$
(36)

where \(\sigma =\left( \frac{p}{p-1}\right) ^{\frac{1}{p}}q^{1-\frac{1}{p}}\). If we put

$$\begin{aligned} G(s)=\int _0^s\frac{dz}{(1-z^q)^{\frac{1}{p}}}, \ \ \ \mathrm{for \ all} \ \ s\in [0,1], \end{aligned}$$

by (36) it follows

$$\begin{aligned} u(t)=CG^{-1}\left( \frac{\sigma }{q} C^{\frac{q}{p}-1}(t-a)\right) , \ \ \ \mathrm{for \ all} \ \ t\in [a,t_0], \end{aligned}$$
(37)

and, by symmetry, \(u(t)=u(b-t)\), for all \(t\in ]t_0,b]\).

Knowing the solution \(u\) allows, thanks to Lemma 2, to determine the exact value of \(c_q\) in the one-dimensional case.

Indeed, note that, for \(t=t_0\) in (36), one has

$$\begin{aligned} \frac{1}{q}\beta \left( \frac{1}{q},1-\frac{1}{p}\right) =\int _0^{1}\frac{dz}{(1-z^q)^{\frac{1}{p}}}=G(1)=\frac{\sigma }{q} C^{\frac{q}{p}-1}\left( \frac{b-a}{2}\right) . \end{aligned}$$
(38)

Therefore, by (34), (36), (37) and (38), we obtain

$$\begin{aligned} \int _a^b|u(t)|^qdt&= 2\int _a^{t_0}|u(t)|^qdt=2C^q\int _a^{t_0}\left( G^{-1}\left( \frac{\sigma }{q} C^{\frac{q}{p}-1}(t-a)\right) \right) ^qdt\\&= \frac{2q}{\sigma }C^{q-\frac{q}{p}+1}\int _0^1t^q(1-t^q)^{-\frac{1}{p}}dt= \frac{2}{\sigma }C^{q-\frac{q}{p}+1}\beta \left( 1+\frac{1}{q},1-\frac{1}{p}\right) \\&= \frac{2}{\sigma }C^{q-\frac{q}{p}+1}\frac{\frac{1}{q}}{\frac{1}{1\!-\!\frac{1}{p}\!+\!\frac{1}{q}}} \beta \left( \frac{1}{q},1\!-\!\frac{1}{p}\right) \!=\!\frac{2}{\sigma }C^{q-\frac{q}{p}+1}\frac{p}{pq\!-\!q\!+\!p} \beta \left( \frac{1}{q},1\!-\!\frac{1}{p}\right) \\&= \frac{p}{pq-q+p}\left( 2\frac{\beta \left( \frac{1}{q},1-\frac{1}{p}\right) }{\sigma }\right) ^{\frac{qp}{q-p}} (b-a)^{1-\frac{qp}{q-p}}. \end{aligned}$$

Thus, by Lemma 2 and recalling the definition of \(\sigma \),

$$\begin{aligned} c_q=\frac{p^{\frac{1}{p}}q^{1-\frac{1}{p}}(qp-q+p)^{\frac{1}{p}- \frac{1}{q}}}{2(p-1)^{\frac{1}{p}}\beta \left( \frac{1}{q},1-\frac{1}{p}\right) }(b-a)^{\frac{1}{q}- \frac{1}{p}+1}. \end{aligned}$$

Note also that, by (35) and (38) and the symmetry of \(u\), we have

$$\begin{aligned} u\left( \frac{a+b}{2}\right) =u'(a)=-u'(b)=\left( \frac{p-1}{p}\right) ^{\frac{1}{q-p}}q^{\frac{1-q}{q-p}} \left( \frac{2}{b-a}\beta \left( \frac{1}{q},1-\frac{1}{p}\right) \right) ^{\frac{q}{q-p}}.\nonumber \\ \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anello, G., Cordaro, G. On the asymptotic behavior of certain solutions of the Dirichlet problem for the equation \(-\Delta _p u=\lambda |u|^{q-2}u\) . Monatsh Math 172, 127–149 (2013). https://doi.org/10.1007/s00605-013-0550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-013-0550-x

Keywords

Mathematics Subject Classification (2010)

Navigation