Skip to main content
Log in

Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a label-free electrochemical aptasensor for ultrasensitive and highly specific detection of the antibiotic based on cascade enzymatic recycling couple with DNAzyme amplification. The assay involves two sequential reactions: the first reaction is a λ exonuclease-assisted cyclic digestion reaction triggered by target-aptamer binding. The second reaction is a nicking endonuclease-aided cyclic nicking reaction, which produces a large amount of G-rich nucleic acid segments. These form a G-quadruplex/hemin complex in the presence of K(I) ions and hemin. Because the G-quadruplex/hemin complex acts as a horseradish peroxidase-mimicking DNAzyme with excellent redox activity, the electrochemical signal transduction is accomplished due to the electroreduction of H2O2. It appears that this work is the first example that cascade enzymatic recycling coupled to DNAzyme amplification is used for antibiotic detection. The aptasensor was applied to the quantitation of kanamycin and gave a response that is linear in the 1 pM to 10 nM kanamycin concentration range, with a detection limit as low as 0.5 pM. The working voltage (vs. Ag/AgCl) at which data can be acquired best is −0.35 V. The assay offers the advantages of remarkably improved sensitivity, use of affordable instrumentation, and simplified operation without the need for electrochemical labeling or addition of labile reagents. Thus, cascade enzymatic recycling coupled to DNAzyme amplification represents a versatile platform for highly sensitive and specific antibiotics detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhou LJ, Ying GG, Zhao JL, Yang JF, Wang L, Yang B, Liu S (2011) Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ Pollut 159:1877–1885

    Article  CAS  Google Scholar 

  2. Conzuelo F, Gamella M, Campuzano S, Pinacho DG, Reviejo AJ, Marco MP, Pingarrón JM (2012) Disposable and integrated amperometric immunosensor for direct determination of sulfonamide antibiotics in milk. Biosens Bioelectron 36:81–88

    Article  CAS  Google Scholar 

  3. Megoulas NC, Koupparis MA (2004) Direct determination of kanamycin in raw materials, veterinary formulation and culture media using a novel liquid chromatography-evaporative light scattering method. Anal Chim Acta 547:64–72

    Article  Google Scholar 

  4. Huang YJ, Cheng MM, Li WH, Wu LH, Chen YS, Luo YM, Christie P, Zhang HB (2013) Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal Methods 5:3721–3731

    Article  CAS  Google Scholar 

  5. Sierra-Rodero M, Fernández-Romero JM, Gómez-Hens A (2014) Determination of fluoroquinolone antibiotics by microchip capillary electrophoresis along with time-resolved sensitized luminescence of their terbium(III) complexes. Microchim Acta 181:1897–1904

    Article  CAS  Google Scholar 

  6. Mariani S, Ermini ML, Scarano S, Bellissima F, Bonini M, Berti D, Minunni M (2013) Improving surface plasmon resonance imaging of DNA by creating new gold and silver based surface nanostructures. Microchim Acta 180:1093–1099

    Article  CAS  Google Scholar 

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  8. Ellington AD, Szostak JW (1990) In vitro selection of RNA that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  9. Wu SJ, Li Q, Duan N, Ma HL, Wang ZP (2016) DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR. Microchim Acta 183:2555–2562

    Article  CAS  Google Scholar 

  10. Tang DP, Hou L (2016) Aptasensor for ATP based on analyte-induced dissociation of ferrocene-aptamer conjugates from manganese dioxide nanosheets on a screen-printed carbon electrode. Microchim Acta 183:2705–2711

    Article  CAS  Google Scholar 

  11. Dai H, Zhang SP, Hong ZS, Lin YY (2016) A potentiometric addressable Photoelectrochemical biosensor for sensitive detection of two biomarkers. Anal Chem 88:9532–9538

    Article  CAS  Google Scholar 

  12. Kurita R, Arai K, Nakamoto K, Kato D, Niwa O (2012) Determination of DNA methylation using Electrochemiluminescence with surface Accumulable Coreactant. Anal Chem 84:1799–1803

    Article  CAS  Google Scholar 

  13. Wang YS, Ma TC, Ma SY, Liu YJ, Tian YP, Wang RN, Jiang YB, Hou DJ, Wang JL (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184:203–210

    Article  CAS  Google Scholar 

  14. Wang MH, Zhang S, Ye ZH, Peng DL, He LH, Yan FF, Yang YQ, Zhang HZ, Zhang ZH (2015) A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb(II) and hg(II). Microchim Acta 182:2251–2258

    Article  CAS  Google Scholar 

  15. Wang HZ, Wang Y, Liu S, Yu JH, Xu W, Guo YN, Huang JD (2015) Target–aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level. Chem Commun 51:8377–8380

    Article  CAS  Google Scholar 

  16. Cui HF, Xu TB, Sun YL, Zhou AW, Cui YH, Liu W, Luong HTJ (2015) Hairpin DNA as a Biobarcode modified on gold nanoparticles for electrochemical DNA detection. Anal Chem 87:1358–1365

    Article  CAS  Google Scholar 

  17. Zhu XL, Zhang HH, Feng C, Ye ZH, Li GX (2014) A dual-colorimetric signal strategy for DNA detection based on graphene and DNAzyme. RSC Adv 4:2421–2426

    Article  CAS  Google Scholar 

  18. Liu SF, Gong HW, Wang YQ, Wang L (2016) Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification. Biosens Bioelectron 77:818–823

    Article  CAS  Google Scholar 

  19. Zhou WJ, Gong X, Xiang Y, Yuan R, Chai YQ (2014) Target-triggered quadratic amplification for label-free and sensitive visual detection of cytokines based on hairpin aptamer DNAzyme probes. Anal Chem 86:953–958

    Article  CAS  Google Scholar 

  20. Xu Y, Wang Y, Liu S, Yu JH, Wang HZ, Guo YN, Huang JD (2016) Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification. Biosens Bioelectron 81:236–241

    Article  CAS  Google Scholar 

  21. Zhao HZ, Dong JJ, Zhou FL, Li BX (2015) G-quadruplex-based homogenous fluorescence platform for ultrasensitive DNA detection through isothermal cycling and cascade signal amplification. Microchim Acta 182:2495–2502

    Article  CAS  Google Scholar 

  22. Meng Y, Hun X, Zhang Y, Luo X (2016) Toehold-aided DNA recycling amplification using hemin and G-quadruplex reporter DNA on magnetic beads as tags for chemiluminescent determination of riboflavin. Microchim Acta 183:2965–2971

    Article  CAS  Google Scholar 

  23. He Y, Jiao B (2016) Simple and convenient G-quadruplex-based fluorescent assay of biotin-streptavidin interaction via terminal protection of small molecule-linked DNA. Microchim Acta 183:3303–3309

    Article  CAS  Google Scholar 

  24. Yang J, Xiang Y, Song C (2015) Quadruple signal amplification strategy based on hybridization chain reaction and an immunoelectrode modified with graphene sheets, a hemin/G-quadruplex DNAzyme concatamer, and alcohol dehydrogenase: ultrasensitive determination of influenza virus subtype H7N9. Microchim Acta 182:2377–2385

    Article  CAS  Google Scholar 

  25. Travascio P, Witting PK, Mauk AG, Sen D (2001) The peroxidase activity of a hemin -DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc 123:1337–1248

    Article  CAS  Google Scholar 

  26. Li T, Shi LL, Wang EK, Dong SJ (2009) Multifunctional G-Quadruplex aptamers and their application to protein detection. Chem Eur J 15:1036–1042

    Article  CAS  Google Scholar 

  27. Loomans E, Wiltenburg J, Koets M, Amerongen AV (2003) Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. J Agric Food Chem 51:587–593

    Article  CAS  Google Scholar 

  28. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415:175–181

    Article  CAS  Google Scholar 

  29. Yu SJ, Wei Q, Du B, Wu D, Li H, Yan LG, Ma HM, Zhang Y (2013) Label-free immunosensor for the detection of kanamycin using ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Anal Biochem 415:175–181

    Google Scholar 

  30. Wang XY, Zou MJ, Xu X, Lei R, Li K, Li N (2009) Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles. Anal Bioanal Chem 395:2397–2403

    Article  CAS  Google Scholar 

  31. Li RZ, Liu Y, Cheng L, Yang CZ, Zhang JD (2014) Photoelectrochemical Aptasensing of kanamycin using visible LightActivated carbon nitride and graphene oxide nanocomposites. Anal Chem 86:9372–9375

    Article  CAS  Google Scholar 

  32. Liao QG, Wei BH, Luo LG (2017) Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184:627–632

    Article  CAS  Google Scholar 

  33. Liu C, Lu C, Tang Z, Chen X, Wang G, Sun F (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182:2567–2575

    Article  CAS  Google Scholar 

  34. He JX, Wang Y, Zhang XY (2016) Preparation of artificial antigen and development of IgY-based indirect competitive ELISA for the detection. Microchim Acta 9:744–751

    Google Scholar 

  35. Wang CK, Wang CG, Wang QQ, Chen D (2017) Resonance light scattering method for detecting kanamycin in milk with enhanced sensitivity. Anal Bioanal Chem 409:2839–2846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (21405060, 1471644), Shandong Province Natural Science Funds for Distinguished Young Scholars (JQ201410), and Shandong Province Natural Science Funds (ZR2015CM027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 4.82 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Li, R., Li, H. et al. Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim Acta 184, 2941–2948 (2017). https://doi.org/10.1007/s00604-017-2311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2311-3

Keywords

Navigation