Skip to main content
Log in

SERS based point-of-care detection of food-borne pathogens

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have developed a microfluidic platform for improved detection of pathogenic bacteria by using silver nanoparticles and new platforms for chemometric data analysis, viz. a combination of principle component analysis and linear discriminant analysis. The method can distinguish eight key foodborne pathogens (E. coli, S. typhimirium, S. enteritis, Pseudomonas aeruginosa, L. monocytogenes, L. innocua, MRSA 35 and MRSA 86) and, hence, holds good promise for use in the food industry.

A microfluidic and surface-enhanced Raman scattering substrate integrated biosensing platform involving silver nanoparticles is demonstrated for rapid and on-site detection and discrimination of polymicrobial food-borne pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Griffiths M (2005) Understanding pathogen behaviour: virulence, stress response, and resistance. CRC Press, England

    Book  Google Scholar 

  2. Centers for Disease Control and Prevention (2011) Estimates of Foodborne illness in the United States http://www.cdc.gov/Features/dsFoodborneEstimates/. Accessed 26 June 2015

  3. Martins TD, Ribeiro ACC, Dias DL, Cavalcante HPM, de Camargo HS, da Costa Filho PA (2013) New insights on optical biosensors: techniques, construction and application. Intech, Croatia

    Google Scholar 

  4. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM (2011) Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900. doi:10.1089/fpd.2010.0787

    Article  Google Scholar 

  5. Ibrahim SA, Asakir SF, Idris AA, Martinez-Urtaza J, Elsafi HH (2013) Prevalence of Salmonella species among asymptomatic food handlers in Khartoum State, Sudan. Br J Biomed Sci 70:88–89

    CAS  Google Scholar 

  6. Talabi AO, Etonyeaku AC, Sowande OA, Olowookere SA, Adejuyigbe O (2014) Predictors of mortality in children with typhoid ileal perforation in a Nigerian tertiary hospital. Pediatr Surg Int 30:1121–1127. doi:10.1007/s00383-014-3592-9

    Article  Google Scholar 

  7. Noris M, Remuzzi G (2005) Hemolytic uremic syndrome. J Am Soc Nephrol 16:1035–1050. doi:10.1681/ASN.2004100861

    Article  CAS  Google Scholar 

  8. Breidenstein EB, de la Fuente-Núñez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005

    Article  CAS  Google Scholar 

  9. Centers for Disease Control and Prevention (2014) Pseudomonas aeruginosa in Healthcare Settings http://www.cdc.gov/hai/organisms/pseudomonas.html. Accessed 30 Aug 2015

  10. Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis 19:1–9. doi:10.3201/eid1901.120393

    Article  Google Scholar 

  11. Wilder JR, Wegener DT, David MZ, Macal C, Daum R, Lauderdale DS (2014) A national survey of skin infections, care behaviors and MRSA nnowledge in the United States. PLoS One 19:e104277. doi:10.1371/journal.pone.0104277

    Article  Google Scholar 

  12. Crago B, Ferrato C, Drews SJ, Svenson LW, Tyrrell G, Louie M (2012) Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbiol 32(1):202–205. doi:10.1016/j.fm.2012.04.012

    Article  CAS  Google Scholar 

  13. Hoffmann S, Batz MB, Morris Jr JG (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Protect 75:1292–1302. doi:10.4315/0362-028X

    Article  Google Scholar 

  14. Schlosser E (2012) Fast food nation: the dark side of the all-American meal. Mariner Books, New York

    Google Scholar 

  15. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28. doi:10.1007/s00604-012-0824-3

    Article  CAS  Google Scholar 

  16. Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH (2014) Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat Nanotechnol 9:969–980. doi:10.1038/nnano.2014.261

    Article  CAS  Google Scholar 

  17. Safavieh M, Ahmed MU, Tolba M, Zourob M (2012) Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosens Bioelectron 31:523–528. doi:10.1016/j.bios.2011.11.032

    Article  CAS  Google Scholar 

  18. Innis MA, Gelfand DH, Sninsky JJ, White TJ (2012) PCR protocols: a guide to methods and applications. Academic Press, Waltham

    Google Scholar 

  19. Mühldorfer I, Schäfer KP (2001) Emerging bacterial pathogens (Vol. 8). Karger Medical and Scientific Publishers, Basel

    Book  Google Scholar 

  20. Pieczonka NP, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37:946–954. doi:10.1039/B709739P

    Article  CAS  Google Scholar 

  21. Chen L, Mungroo N, Daikuara L, Neethirajan S (2015) Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J Nanobiotechnol 13:1–9. doi:10.1186/s12951-015-0106-4

    Article  Google Scholar 

  22. Zhou H, Yang D, Mircescu NE, Ivleva NP, Schwarzmeier K, Wieser A, Haisch C (2015) Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim Acta 182:2259–2266. doi:10.1007/s00604-015-1570-0

    Article  CAS  Google Scholar 

  23. Juvé V, Cardinal MF, Lombardi A, Crut A, Maioli P, Pérez-Juste J, Vallée F (2013) Size-dependent surface Plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett 13:2234–2240. doi:10.1021/nl400777y

    Article  Google Scholar 

  24. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. doi:10.1038/nrmicro2259

    Article  CAS  Google Scholar 

  25. Sundaram J, Park B, Hinton A, Lawrence KC, Kwon Y (2013) Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. J Food Meas Charact 7:1–12. doi:10.1007/s11694-012-9133-0

  26. Su L, Zhang P, Zheng D, Wang Y, Zhong R (2015) Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron Lett 11:157–160. doi:10.1007/s11801-015-4216-x

  27. Wang J, Xie X, Feng J, Chen JC, Du X, Luo J, Lu X, Wang S (2015) Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. Int J Food Microbiol 204:66–74. doi:10.1016/j.ijfoodmicro.2015.03.021

Download references

Acknowledgments

The authors sincerely thank the Natural Sciences and Engineering Research Council of Canada (4009929), Mitacs Globalink Program, and the Ontario Ministry of Research and Innovation (520512) for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Neethirajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungroo, N.A., Oliveira, G. & Neethirajan, S. SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183, 697–707 (2016). https://doi.org/10.1007/s00604-015-1698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1698-y

Keywords

Navigation