Skip to main content
Log in

Mixed valence Mn,La,Sr-oxide based magnetic nanoparticles coated with silica nanoparticles for use in an electrochemical immunosensor for IgG

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the preparation and properties of mixed valence manganite nanoparticles (NPs) of the type La0.67Sr0.33MnO3 for use in electrochemical immunoassays. The NPs were synthesized using the reverse micelle method and their surface was then functionalized with silica nanoparticles. The resulting NPs (La0.67Sr0.33MnO3@SiO2) were characterized by X-ray diffraction, scanning electron microscopy and physical property measurements. Their typical diameter is ~200 nm, and the magnetic saturation occurs at 75 emu⋅g‾1, and both coercive force and hysteresis loop remain at almost zero. The silica NPs immobilized on the La0.67Sr0.33MnO3 NPs have a diameter of ~20 nm. The La0.67Sr0.33MnO3@SiO2 NPs were used to develop an electrochemical immunoassay for human IgG. Antibody (anti-human IgG) was immobilized on the silica NPs on the magnetic core, and this process was monitored by cyclic voltammetry and square-wave voltammetry. The formation of the immunocomplex (Ab/Ag) on the surface of the electrode was monitored using hexacyanoferrate redox system as the redox marker. The assay has a linear working range up to an IgG concentration of 5 ng⋅mL‾1, and the detection limit is 0.6 ng⋅mL‾1.

La0.67Sr0.33MnO3 magnetic nanoparticles were functionalized using silica. Anti-human IgG was covalently immobilized on the silica coated magnetic nanoparticles for specific targeting of human IgG. Formation of the immunocomplex on magnetic nanoparticles was monitored using the hexacyanoferrate redox system as a redox marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu G, Lin Y (2007) Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 74:308

    Article  CAS  Google Scholar 

  2. Xie Z, Huang J, Luo S, Xie L, Liu J, Pang Y, Deng X, Fan Q (2014) Ultrasensitive electrochemical immunoassay for avian influenza subtype H5 using nanocomposite. PLoS One 9:1

    Article  CAS  Google Scholar 

  3. Liu G, Khor SM, Iyengar SG, Gooding JJ (2012) Development of an electrochemical immunosensor for the detection of HbA1c in serum. Analyst 137:829

    Article  CAS  Google Scholar 

  4. Sharma MK, Agarwal GS, Rao VK, Upadhyay S, Merwyn S, Gopalan N, Rai GP, Vijayaraghavan R, Prakash S (2010) Amperometric immunosensor based on gold nanoparticles/alumina sol-gel modified screen-printed electrodes for antibodies to plasmodium falciparum histidine rich protein-2. Analyst 135:608

    Article  CAS  Google Scholar 

  5. Szymanski MS, Porter RA (2013) Preparation and quality control of silver nanoparticle–antibody conjugate for use in electrochemical immunoassays. J Immunol Methods 387:262

    Article  CAS  Google Scholar 

  6. Guo S, Dong S (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC Trends Anal Chem 28:96

    Article  CAS  Google Scholar 

  7. Akter R, Rahman MA, Rhee CK (2012) Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal Chem 84:6407

    Article  CAS  Google Scholar 

  8. Haque A-MJ, Park H, Sung D, Jon S, Choi S-Y, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871

    Article  CAS  Google Scholar 

  9. Zarei H, Ghourchian H, Eskandari K, Zeinali M (2012) Magnetic nanocomposite of anti-human IgG/COOH–multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal Biochem 421:446

    Article  CAS  Google Scholar 

  10. Akter R, Kyun Rhee C, Aminur Rahman M (2014) Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels. Biosens Bioelectron 54:351

    Article  CAS  Google Scholar 

  11. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, Protection, Functionalization, and Application. Angew Chem Inter Edit 46:1222

    Article  CAS  Google Scholar 

  12. Zahra R, Ahmad R, Ali Asghar MS, Ali A, Soghra K (2006) A study of the interaction between ropranolol and NSAIDs in protein binding by gel filtration method. Indian J Clin Biochem 21:121

    Article  CAS  Google Scholar 

  13. Gowda BG, Seetharamappa J, Melwanki MB (2002) Indirect spectrophotometric determination of propranolol hydrochloride and piroxicam in pure and pharmaceutical formulations. Anal Sci 18:671

    Article  CAS  Google Scholar 

  14. Gotardo MA, Tognolli JO, Pezza HR, Pezza L (2008) Detection of propranolol in pharmaceutical formulations by diffuse reflectance spectroscopy. Spectrochim Acta Part A 69:1103

    Article  Google Scholar 

  15. Basti H, Ben Tahar L, Smiri LS, Herbst F, Vaulay MJ, Chau F, Ammar S, Benderbous S (2010) Catechol derivatives-coated Fe3O4 and [gamma]-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341:248

    Article  CAS  Google Scholar 

  16. Koh I, Josephson L (2009) Magnetic nanoparticle sensors. Sensors 9:8130

    Article  CAS  Google Scholar 

  17. de Souza CM, Laube T, Yamanaka H, Alegret S, Pividori MI (2011) Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles. Anal Chem 83:5570

    Article  Google Scholar 

  18. Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. TrAC Trends Anal Chem 30:1095

    Article  CAS  Google Scholar 

  19. Zhang L, Qiao S, Jin Y, Yang H, Budihartono S, Stahr F, Yan Z, Wang X, Hao Z, Lu GQ (2008) Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Adv Funct Mater 18:3203

    Article  CAS  Google Scholar 

  20. Philipse AP, MP, van Bruggen, Pathmamanoharan C (1994) Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir, 10: 92

  21. Rostamizadesh S, Estiri H, Azad M (2014) Au anchored to (α-Fe2O3)-MCM-41-HS as a novel magnetic nanocatalyst for water-medium and solvent-free alkyne hydration Catal Commun 57:29

  22. Chen F, Ming X, Chen X, Gan M, Wang B, Xu F, Wei H (2014) Immunochromatographic strip for rapid detection of cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosens Bioelectron 61:306

    Article  CAS  Google Scholar 

  23. Shin MH, Hong W, Sa Y, Chen L, Jung Y-J, Wang X, Zhao B, Jung YM (2014) Multiple detection of proteins by SERS-based immunoassay with core shell magnetic gold nanoparticles. Vib Spectrosc 72:44

    Article  CAS  Google Scholar 

  24. Yin H, Xu Z, Zhou Y, Wang M, Ai S (2013) An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds. Analyst 138:1851

    Article  CAS  Google Scholar 

  25. Pradhan AK, Bah R, Konda RB, Mundle R, Mustafa H, Bamiduro O, Rakhimov RR, Wei X, Sellmyer DJ (2008) Synthesis and magnetic characterizations of manganite-based composite nanoparticles for biomedical applications. J Appl Phys 103:07F704

    Google Scholar 

  26. Krivoruchko VN, Marchenko AI, Prokhorov AA (2007) Superparamagnetic resonance of single-domain nanoparticles of LaSrMnO3. Low Temperature Physics 33:433

    Article  CAS  Google Scholar 

  27. Kale SN, Arora S, Bhayani KR, Paknikar KM, Jani M, Wagh UV, Kulkarni SD, Ogale SB Cerium doping and stoichiometry control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study, Nanomed: Nanotech, Biol Med, 2: 217

  28. Islam MS, Hanh DT, Khan FA, Hakim MA, Minh DL, Hoang NN, Hai NH, Chau N (2009) Giant magneto-caloric effect around room temperature at moderate low field variation in La0.7(Ca1 − xSrx)0.3MnO3 perovskites. Phys B Condens Matter 404:2495

    Article  CAS  Google Scholar 

  29. Mamani JB, Costa-Filho AJ, Cornejo DR, Vieira ED, Gamarra LF (2013) Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Mater Charact 81:28

    Article  CAS  Google Scholar 

  30. Liu ZL, Wang X, Yao KL, Du GH, Lu QH, Ding ZH, Tao J, Ning Q, Luo XP, Tian DY, Xi D (2004) Synthesis of magnetite nanoparticles in W/O microemulsion. J Mater Sci 39:2633

    Article  CAS  Google Scholar 

  31. Simeonidis K, Mourdikoudis S, Moulla M, Tsiaoussis I, Martinez-Boubeta C, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2007) Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J Magn Magn Mater 316:e1

    Article  CAS  Google Scholar 

  32. K-w A, Sampson NS (2003) Cholesterol oxidase senses subtle changes in lipid bilayer structure†. Biochem 43:827

    Google Scholar 

  33. Fang H, Ma CY, Wan TL, Zhang M, Shi WH (2007) Fabrication of monodisperse magnetic Fe3O4-SiO 2 nanocomposites with core-shell structures. J Phys Chem C 111:1065

    Article  CAS  Google Scholar 

  34. Chen CT, Chen YC (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912

    Article  CAS  Google Scholar 

  35. Kong J, Coolahan K, Mugweru A (2013) Manganese based magnetic nanoparticles for heavy metal detection and environmental remediation. Anal Methods 5:5128

    Article  CAS  Google Scholar 

  36. Ahmad T, Ramanujachary K, Lofland S, Ganguli A (2006) Reverse micellar synthesis and properties of nanocrystalline GMR materials (LaMnO3, La0.67Sr0.33MnO3 and La0.67Ca0.33MnO3): Ramifications of size considerations. J Chem Sci 118:513

    Article  CAS  Google Scholar 

  37. Li S, Luo J, Yang X, Wan Y, Liu C (2014) A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@carbon dots nanocomposite electrochemiluminescence resonance energy transfer. Sensors Actuators B Chem 197:43

    Article  CAS  Google Scholar 

  38. Li J, Gao H (2008) A renewable potentiometric immunosensor based on Fe3O 4 nanoparticles immobilized anti-IgG. Electroanalysis 20:881

    Article  CAS  Google Scholar 

  39. Liu ZM, Yang HF, Li YF, Liu YL, Shen GL, Yu RQ (2006) Core-shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode and amperometric immunosensing. Sensors Actuators B Chem 113:956

    Article  CAS  Google Scholar 

  40. Chen Y, Cheng H, Tram K, Zhang S, Zhao Y, Han L, Chen Z, Huan S (2013) A paper-based surface-enhanced resonance raman spectroscopic (SERRS) immunoassay using magnetic separation and enzyme-catalyzed reaction. Analyst 138:2624

    Article  CAS  Google Scholar 

  41. Fang X, Tan OK, Gan YY, Tse MS (2010) Novel immunosensor platform based on inorganic barium strontium titanate film for human IgG detection. Sensors Actuators B Chem 149:381

    Article  CAS  Google Scholar 

  42. Qian J, Zhang C, Cao X, Liu S (2010) Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal Chem 82:6422

    Article  CAS  Google Scholar 

  43. Díaz-González M, Hernández-Santos D, González-García MB, Costa-García A (2005) Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes. Talanta 65:565

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Achana Jain, a postdoctoral scholar, for her help in synthesis of the magnetic nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Mugweru.

Additional information

Electrochemical IgG immunosensor based on La0.67Sr0.33MnO3@SiO2 magnetic nanoparticles

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shore, A., Mazzochette, Z. & Mugweru, A. Mixed valence Mn,La,Sr-oxide based magnetic nanoparticles coated with silica nanoparticles for use in an electrochemical immunosensor for IgG. Microchim Acta 183, 475–483 (2016). https://doi.org/10.1007/s00604-015-1672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1672-8

Keywords

Navigation