Skip to main content
Log in

CdO-TiO2 nanocomposite thin films for resistive hydrogen sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A resistive gas sensor for hydrogen (H2) was developed using CdO-TiO2 nanocomposite films deposited onto a glass substrate in a thickness of typically 300–450 nm by co-sputtering. X-ray diffraction patterns confirmed the formation of a perovskite CdTiO3 phase. Field emission-scanning electron micrographs showed spherically shaped grains which decreased in size on increasing the TiO2 concentration, most probably due to difference in the size of the ions of Cd and Ti. The nanostructured films with lower concentration of TiO2 exhibited good response to H2 at an operating temperature of 275 °C and an operating voltage of 250 mV. The sensors give a 3 % relative resistance change on exposure to 500 ppm of H2, have a 45 s response time and a 90 s recovery time. The H2 sensor described here does not require expensive additives and thus may find both civilian and industrial applications.

When CdO-TiO2 films are exposed to H2 it will react with adsorbed atomic oxygen species available on the sensor surface. CdO-TiO2 films with lower concentration of TiO2 exhibited maximum response of 3 % towards 500 ppm of H2 at an operating temperature of 275 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moriarty P, Honnery D (2009) Hydrogen’s role in an uncertain energy future. Int J Hydrog Energy 34:31–39. doi:10.1016/j.ijhydene.2008.10.060

    Article  CAS  Google Scholar 

  2. Ball M, Wietschel M (2009) The future of hydrogen - opportunities and challenges. Int J Hydrog Energy 34:615–627. doi:10.1016/j.ijhydene.2008.11.014

    Article  CAS  Google Scholar 

  3. Boon-Brett L, Bousek J, Black G et al (2010) Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int J Hydrog Energy 35:373–384. doi:10.1016/j.ijhydene.2009.10.064

    Article  CAS  Google Scholar 

  4. Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors - a review. Sensors Actuators, B Chem 157:329–352. doi:10.1016/j.snb.2011.04.070

    Article  Google Scholar 

  5. Mitra P, Chatterjee AP, Maiti HS (1998) ZnO thin film sensor. Mater Lett 35:33–38. doi:10.1016/S0167-577X(97)00215-2

    Article  CAS  Google Scholar 

  6. Steinebach H, Kannan S, Rieth L, Solzbacher F (2010) H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sensors Actuators, B Chem 151:162–168. doi:10.1016/j.snb.2010.09.027

  7. Calavia R, Mozalev A, Vazquez R et al (2010) Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen. Sensors Actuators, B Chem 149:352–361. doi:10.1016/j.snb.2010.06.055

    Article  CAS  Google Scholar 

  8. Choi Y-H, Hong S-H (2007) H2 sensing properties in highly oriented SnO2 thin films. Sensors Actuators B Chem 125:504–509. doi:10.1016/j.snb.2007.02.043

    Article  CAS  Google Scholar 

  9. Wang B, Zhu LF, Yang YH et al (2008) Fabrication of a SnO2 nanowire Gas sensor and sensor performance for hydrogen. J Phys Chem C 112:6643–6647. doi:10.1021/jp8003147

    Article  CAS  Google Scholar 

  10. Arakelyan VM, Galstyan VE, Martirosyan KS et al (2007) Hydrogen sensitive gas sensor based on porous silicon/TiO2-x structure. Physica E 38:219–221. doi:10.1016/j.physe.2006.12.037

  11. Shen Y, Yamazaki T, Liu Z et al (2009) Hydrogen sensing properties of Pd-doped SnO2 sputtered films with columnar nanostructures. Thin Solid Films 517:6119–6123. doi:10.1016/j.tsf.2009.05.036

  12. Lange U, Hirsch T, Mirsky VM, Wolfbeis OS (2011) Hydrogen sensor based on a graphene-palladium nanocomposite. Electrochim Acta 56:3707–3712. doi:10.1016/j.electacta.2010.10.078

    Article  CAS  Google Scholar 

  13. Nag P, Majumdar S, Bumajdad A, Devi PS (2014) Enhanced gas sensing performance of tin dioxide-based nanoparticles for a wide range of concentrations of hydrogen gas. RSC Adv 4:18512–18521. doi:10.1039/c3ra48060g

    Article  CAS  Google Scholar 

  14. Kaniyoor A, Imran Jafri R, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1:382–386. doi:10.1039/b9nr00015a

    Article  CAS  Google Scholar 

  15. Xiang C, She Z, Zou Y et al (2014) A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram Int 40:16343–16348. doi:10.1016/j.ceramint.2014.07.073

  16. Boudiba A, Zhang C, Navio C et al (2010) Preparation of highly selective, sensitive and stable hydrogen sensors based on Pd-doped tungsten trioxide. Procedia Eng 5:180–183. doi:10.1016/j.proeng.2010.09.077

    Article  CAS  Google Scholar 

  17. Zeng XQ, Latimer ML, Xiao ZL et al (2011) Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes. Nano Lett 11:262–268. doi:10.1021/nl103682s

    Article  CAS  Google Scholar 

  18. Walter EC, Favier F, Penner RM (2002) Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem 74:1546–1553. doi:10.1021/ac0110449

    Article  CAS  Google Scholar 

  19. Dhivya P, Prasad AK, Sridharan M (2012) Nanostructured cadmium oxide thin films for hydrogen sensor. Int J Hydrog Energy 37:18575–18578. doi:10.1016/j.ijhydene.2012.08.098

    Article  CAS  Google Scholar 

  20. Ibrahim IM, Rao GM (2012) Characterization and gas sensitivity of cadmium oxide thin films prepared by thermal evaporation technique. J Electron Devices 13:965–974

    Google Scholar 

  21. Shubham K, Khan RU, Chakrabarti P (2012) TiO2 thin film-based low concentration MIS hydrogen sensor. IEEE Conf Proc of Nirma University International Conference on Engineering, Ahmedabad, p 1–5

  22. Haidry AA, Schlosser P, Durina P et al (2011) Hydrogen gas sensors based on nanocrystalline TiO2 thin films. Cent Eur J Phys 9:1351–1356. doi:10.2478/s11534-011-0042-3

    CAS  Google Scholar 

  23. Lee J, Kim DH, Hong SH, Jho JY (2011) A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sensors Actuators, B Chem 160:1494–1498. doi:10.1016/j.snb.2011.08.001

    Article  CAS  Google Scholar 

  24. Dhivya P, Prasad AK, Sridharan M (2014) Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing. J Solid State Chem 214:24–29. doi:10.1016/j.jssc.2013.11.030

    Article  CAS  Google Scholar 

  25. Dhivya P, Prasad AK, Sridharan M (2015) Effect of sputtering power on the methane sensing properties of nanostructured cadmium oxide films. J Alloys Compd 620:109–115. doi:10.1016/j.jallcom.2014.09.107

    Article  CAS  Google Scholar 

  26. Yun S, Lim S (2011) Effect of Al-doping on the structure and optical properties of electrospun zinc oxide nanofiber films. J Colloid Interface Sci 360:430–439. doi:10.1016/j.jcis.2011.05.022

    Article  CAS  Google Scholar 

  27. Yang H, Wang S, Yang Y (2012) Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. CrystEngComm 14:1135–1142. doi:10.1039/c1ce06143g

    Article  CAS  Google Scholar 

  28. Mizsei J (1995) How can sensitive and selective semiconductor gas sensors be made? Sensors Actuators B Chem 23:173–176. doi:10.1016/0925-4005(94)01269-N

    Article  CAS  Google Scholar 

  29. Mondal B, Basumatari B, Das J et al (2014) ZnO-SnO2 based composite type gas sensor for selective hydrogen sensing. Sensors Actuators, B Chem 194:389–396. doi:10.1016/j.snb.2013.12.093

    Article  CAS  Google Scholar 

  30. Stamataki M, Fasaki I, Tsonos G et al (2009) Annealing effects on the structural, electrical and H2 sensing properties of transparent ZnO thin films, grown by pulsed laser deposition. Thin Solid Films 518:1326–1331. doi:10.1016/j.tsf.2009.02.156

  31. Gupta D, Dutta D, Kumar M et al (2014) A low temperature hydrogen sensor based on palladium nanoparticles. Sensors Actuators B Chem 196:215–222. doi:10.1016/j.snb.2014.01.106

    Article  CAS  Google Scholar 

  32. Reddy CVG, Manorama SV (2000) Room temperature hydrogen sensor based on SnO2:La2O3. J Electrochem Soc 147:390–393. doi:10.1149/1.1393206

    Article  CAS  Google Scholar 

  33. Bayata F, Saruhan-Brings B, Ürgen M (2014) Hydrogen gas sensing properties of nanoporous Al-doped titania. Sensors Actuators B Chem 204:109–118. doi:10.1016/j.snb.2014.07.079

    Article  CAS  Google Scholar 

  34. Wu W, Liu Z, Jauregui LA et al (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors Actuators, B Chem 150:296–300. doi:10.1016/j.snb.2010.06.070

    Article  CAS  Google Scholar 

  35. Park S, Park S, Lee S et al (2014) Hydrogen sensing properties of multiple networked Nb2O5/ZnO core–shell nanorod sensors. Sensors Actuators B Chem 202:840–845. doi:10.1016/j.snb.2014.06.028

    Article  CAS  Google Scholar 

  36. Sadek AZ, Partridge JG, McCulloch DG et al (2009) Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid Films 518:1294–1298. doi:10.1016/j.tsf.2009.02.151

Download references

Acknowledgments

One of the authors MS sincerely thanks DRDO (0903810-1229) for the financial support and the authors sincerely thank SASTRA University, Thanjavur and IGCAR, Kalpakkam for providing necessary experimental facilities. PD sincerely thanks SASTRA University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridharan Madanagurusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnusamy, D., Prasad, A.K. & Madanagurusamy, S. CdO-TiO2 nanocomposite thin films for resistive hydrogen sensing. Microchim Acta 183, 311–317 (2016). https://doi.org/10.1007/s00604-015-1653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1653-y

Keywords

Navigation