Skip to main content
Log in

CO gas sensing properties of Cd(OH)2/CdO thin films synthesized by SILAR method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cd(OH)2/CdO thin films were synthesized on glass substrates by the SILAR method at 30, 40, and 50 SILAR cycles. The effects of the SILAR cycle and sensor operating temperature on the structural, morphological, and CO gas-sensing properties of the films were investigated. XRD studies revealed that synthesized films had a polycrystalline hexagonal phase of Cd(OH)2, and after static gas sensing measurements, the hexagonal phase was transformed to cubic phase of CdO with the effect of operating temperature. SEM analyses confirmed the phase conversion and showed that the morphological properties of films improved with operating temperature. Cd(OH)2/CdO thin film-based sensors were fabricated and static-dynamic gas sensing measurements were made towards CO gas. The detection limit and operating temperature values of sensors were determined. The optimal operating temperature was found to be 157 °C for all sensors. The CO sensing results demonstrated that the sensor with 40 SILAR cycles has the highest sensitivity for 50–500 ppm CO gas concentration values at 157 °C compared to the others. The sensing responses of sensors increased from 24% to 40% for 50 ppm CO gas and from 44% to 69% for 500 ppm CO gas at 157 °C, depending on SILAR cycle. The activation energy (Ea) values of sensors were found to change between 0.396–0.684 eV in the Cd(OH)2 phase regions and 0.495–0.912 eV in the CdO phase regions, with the SILAR cycle. The response and recovery times of sensor with 40 SILAR cycles were found to be 84.2 s and 40.8 s for 50 ppm CO gas at 157 °C, respectively. Furthermore, the sensor demonstrated excellent selectivity to CO gas compared to CO2, CH4, and NH3 gases. Finally, our findings highlight the potential of Cd(OH)2/CdO nanomaterials synthesized using a simple process and in different SILAR cycles as a promising material to enhance the sensing properties of CO gas sensors.

Graphical Abstract

Highlights

  • Cd(OH)2/CdO thin films were synthesized via a simple and facile SILAR method.

  • The operating temperature changed characteristics of Cd(OH)2/CdO sensors.

  • The SILAR cycle optimization for highly sensitive Cd(OH)2/CdO sensors was done.

  • Cd(OH)2/CdO sensors have selective and a long-term stability for CO gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hopwood B, Mellor M, O’Brien G (2005) Sustainable development: Mapping different approaches. Sust. Dev. 13:38–52

    Article  Google Scholar 

  2. Mahajana S, Jagtap S (2020) Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 18:100483

    Article  Google Scholar 

  3. Li Z, Huang Y, Zhang S, Chen W, Kuang Z, Ao D, Liu W, Fu Y (2015) A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater. 300:167–174

    Article  CAS  PubMed  Google Scholar 

  4. Krishna KG, Parne S, Pothukanuri N, Kathirvelu V, Gandi S, Joshi D (2022) Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators A Phys. 341:113578

    Article  CAS  Google Scholar 

  5. Ganesha RS, Navaneethan M, Patil VL, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil PS, Hayakawa Y (2018) Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuators B Chem. 255:672–683

    Article  Google Scholar 

  6. Vanalakara SA, Patil SM, Patil VL, Vhanalkar SA, Patil PS, Kim JH (2018) Simplistic eco-friendly preparation of nanostructured Cu2FeSnS4 powder for solar photocatalytic degradation. Mater. Sci. & Engineering B 229:135–143

    Article  Google Scholar 

  7. Saxena P, Shukla P (2023) A review on recent developments and advances in environmental gas sensors to monitor toxic gas pollutants. Environ. Prog. Sustainable Energy. https://doi.org/10.1002/ep.14126

  8. Patil VL, Vanalakar SA, Kamble AS, Shendage SS, Kim JH, Patil PS (2016) Farming of maize-like zinc oxide via a modified SILAR technique as a selective and sensitive nitrogen dioxide gas sensor. RSC Adv 6:90916–90922

    Article  ADS  CAS  Google Scholar 

  9. Mirzaei A, Park S, Sun GJ, Kheel H, Lee C (2016) CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors. J. Hazard. Mater 305:130–138

    Article  CAS  PubMed  Google Scholar 

  10. Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 160:580–591

    Article  CAS  Google Scholar 

  11. Shendage SS, Patil VL, Vanalakar SA, Patil SP, Harale NS, Bhosale JL, Kim JH, Patil PS (2017) Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 240:426–433

    Article  CAS  Google Scholar 

  12. Chen L, Yu Q, Pan C, Song Y, Dong H, Xie X, Li Y, Liu J, Wang D, Chen X (2022) Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review. Talanta 246:123527

    Article  CAS  PubMed  Google Scholar 

  13. Jagadale SB, Patil VL, Mali SS, Vanalakar SA, Hong CK, Patil PS, Deshmukh HP (2018) Nanorods to nanosheets structural evolution of NixZn1-xO for NO2 gas sensing application. J. Alloys Compd. 766:941–951

    Article  CAS  Google Scholar 

  14. Patil MS, Patil VL, Tarwal NL, More DD, Alman VV, Kadam LD, Patil PS, Kim JH (2019) Gas sensing properties of hydrothermally synthesized button rose-like WO3 thin films. J. Electron. Mater. 48(1):526–535

    Article  ADS  CAS  Google Scholar 

  15. Raj DS, Krishnakumar T, Jayaprakash R, Donato N, Latino M, Neri G (2010) Synthesis and characterization of Cd(OH)2 nanowires obtained by a microwave-assisted chemical route. Sci. Adv. Mater. 2:432–437

    Article  CAS  Google Scholar 

  16. Bhukkal C, Chauhan M, Ahlawat R (2020) Synthesis, structural and enhanced optoelectronic properties of Cd(OH)2/ CdO nanocomposite. Physica B 582:411973

    Article  CAS  Google Scholar 

  17. Khairy M, Ayoub HA, Banks CE (2018) Large-scale production of CdO/Cd(OH)2 nanocomposites for non-enzyme sensing and supercapacitor applications. RSC Adv. https://doi.org/10.1039/C7RA09457D

  18. Naas A, Chetoui A, Ghalouci L, Khelladi MR (2022) Physicochemical investigation of pure cadmium hydroxide Cd(OH)2 and Cd(OH)2–CdO composite material deposited by pneumatic spray pyrolysis technique. Appl. Phys. A 128:512

    Article  ADS  CAS  Google Scholar 

  19. Bhukkal C, Vats R, Goswami B, Rani N, Ahlawat R (2020) Synthesis of Cu doped Cd(OH)2-CdO layered nanostructures and investigation of its different intermediate phases, optical and dc-electrical properties. Mater. Today Commun. 25:101

    Google Scholar 

  20. Prakash T, Bonavita A, Neri G, Kumar ER (2016) Microwave-assisted synthesis of Cd(OH)2/CdO nanorods: Effect of irradiation time. Superlattices Microstruct 90:117–123

    Article  ADS  CAS  Google Scholar 

  21. Kabir MH, Hafiz M, Urmi SA, Haque MJ, Ali MM, Rahman MDS, Khan MKR, Rahman MS (2022) Effect of Ga doping on microstructure, morphology, optical and electrical properties of spray deposited CdO thin films. Opt. Mater. 125:112123

    Article  CAS  Google Scholar 

  22. Yıldırım MA, Ateş A (2009) Structural, optical and electrical properties of CdO/Cd(OH)2 thin films grown by the SILAR method. Sens. Actuators A 155:272–277

    Article  Google Scholar 

  23. Karaduman Er I, Yıldırım MA, Örkçü HH, Ateş A, Acar S (2021) Structural, morphological and gas sensing properties of Zn1-xSnxO thin films by SILAR method. Appl. Phys. A 127(230):1–14

    Google Scholar 

  24. Yergaliuly G, Soltabayev B, Kalybekkyzy S, Bakenov Z, Mentbayeva A (2022) Effect of thickness and reaction media on properties of ZnO thin films by SILAR. Scientific Reports 12:851. https://doi.org/10.1038/s41598-022-04782-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soltabayev B, Yergaliuly G, Ajjaq A, Beldeubayev A, Acar S, Bakenov Z, Mentbayeva A (2022) Quick NO gas sensing by Ti-doped flower–rod-like ZnO structures synthesized by the SILAR method. ACS Appl. Mater. Interfaces 14(36):41555–41570

    Article  CAS  PubMed  Google Scholar 

  26. Soltabayeva B, Yıldırım MA, Ateş A, Acar S (2019) The effect of indium doping concentration on structural, morphological and gas sensing properties of IZO thin films deposited SILAR method. Mater. Sci. Semicond. Process. 101:28–36

    Article  Google Scholar 

  27. Krishna KG, Parne S, Pothukanuri N, Kathirvelu V, Gandi S, Joshi D (2022) Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review Sensors & Actuators: A. Phys. 341:113578

    CAS  Google Scholar 

  28. Borja JH, Bon RR, Vorobiev YV, Landaverde MAH (2016) Chemically deposited ammonia-free cadmium hydroxide thin films. Thin Solid Films 615:256–260

    Article  ADS  Google Scholar 

  29. Eskizeybek V, Avcı A, Chhowalla M (2011) Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination. Cryst. Res. Technol. 46(No. 10):1093–1100

    Article  CAS  Google Scholar 

  30. Ghasemi F, Ghasemi M, Eftekhari L, Soleimanian V (2022) Comparison and influence of metal dopants on the opto-electrical, microstructure and gas sensing properties of nanostructured indium oxide films. Optics & Laser Technology 146:107564

    Article  CAS  Google Scholar 

  31. Gujar TP, Shinde VR, Kim W, Jung KD, Lokhande CD, Joo OS (2008) Formation of CdO films from chemically deposited Cd(OH)2 films as a precursor. Appl. Surf. Sci. 254:3813–3818

    Article  ADS  CAS  Google Scholar 

  32. Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators, A. 267:42–261

    Article  Google Scholar 

  33. Barin O, Ajjaq A, Çağırtekin AO, Karaduman Er I, Yıldırım MA, Ates A, Acar S (2022) Pivotal role of nucleation layers in the hydrothermally-assisted growth of ZnO and its H2 gas sensing performance. Sens. Actuators B Chem. 371:132499

    Article  CAS  Google Scholar 

  34. Raj DS, Krishnakumar T, Jayaprakash R, Prakash T, Leonardi G, Neri G (2012) CO sensing characteristics of hexagonal-shaped CdO nanostructures prepared by microwave irradiation. Sens. Actuators B Chem 171-172:853–859

    Article  Google Scholar 

  35. Jamalpoor N, Ghasemi M, Soleimanian (2018) Investigation of the role of depositionn rate on optical, microstructure and ethanol sensing characteristics of nanostructured Sn doped In2O3 films. Mater. Res. Bull. 106:49–56

    Article  CAS  Google Scholar 

  36. Wang T, Kou X, Zhao L, Sun P, Liu C, Wang Y, Shimanoe K, Yamazoe N, Lu G (2017) Flower-like ZnO hollow microspheres loaded with CdO nanoparticlesas high performance sensing material for gas sensors. Sens. Actuators B Chem. 250:692–702

    Article  CAS  Google Scholar 

  37. Krainer J, Deluca M, Lackner E, Wimmer-Teubenbacher R, Sosada F, Gspan C, Rohracher K, Wachmann E, Koeck A (2016) CMOS integrated tungsten oxide nanowire networks for ppb-level H2S sensing. Procedia Engineering 168:272–275

    Article  CAS  Google Scholar 

  38. Fu TX (2018) Gas sensor based on three dimensional Bi2S3 nanowires network for ammonia detection at room temperature. Mater. Res. Bull. 99:460–465

    Article  CAS  Google Scholar 

  39. Nwanya AC, Deshmukh PR, Osuji RU, Maaza M, Lokhande CD, Ezema FI (2015) Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film. Sens. Actuators B Chem. 206:671–678

    Article  CAS  Google Scholar 

  40. Kamble AS, Pawar RC, Patil JY, Suryavanshi SS, Patil PS (2011) From nanowires to cubes of CdO: Ethanol gas response. J. Alloy Compd. 509:1035–1039

    Article  CAS  Google Scholar 

  41. Abed HR, Khudadad AI, Yousif AA (2022) Impact of high vacuum annealing temperature on the structural, photoluminescence, and room temperature liquefied petroleum gas sensing of direct current magnetron sputtered CdO films. Mater. Chem. Phys. 289:126446

    Article  CAS  Google Scholar 

  42. Inyawilert K, Wisitsoraat A, Tuantranont A, Singjai P, Phanichphant S, Liewhiran C (2014) Ultra-rapid VOCs sensors based on sparked-In2O3 sensing films. Sens. Actuators B Chem 192:745–754

    Article  CAS  Google Scholar 

  43. Tong PV, Minh LH, Duy NV, Hung CM (2021) Porous In2O3 nanorods fabricated by hydrothermal method for an effective CO gas sensor. Mater. Res. Bull. https://doi.org/10.1016/j.materresbull.2020.111179

  44. Umar A, Ibrahim AA, Kumar R, Algadi H, Albargi H, Alsairi MA, Alhmami MAM, Zeng W, Ahmed F, Akbar S (2021) CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environ. Res. https://doi.org/10.1016/j.envres.2021.111377

Download references

Author contributions

EDM: Writing - review & editing, Visualization, Methodology, Investigation, Formal analysis, Conceptualization. STY: Writing - review & editing, Methodology, Investigation, Conceptualization. AOÇ: Writing - review & editing, Investigation. AA: Writing - review & editing, Methodology, Investigation, Conceptualization. SA: Writing - review & editing, Methodology, Investigation, Funding acquisition, Conceptualization. MAY: Writing - review & editing, Writing - original draft preparation, Visualization, Methodology, Investigation, Formal analysis, Supervision, Funding acquisition, Conceptualization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ali Yıldırım.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müezzinoğlu, E.D., Tuna Yıldırım, S., Çağırtekin, A.O. et al. CO gas sensing properties of Cd(OH)2/CdO thin films synthesized by SILAR method. J Sol-Gel Sci Technol 109, 639–653 (2024). https://doi.org/10.1007/s10971-023-06298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06298-1

Keywords

Navigation