Skip to main content
Log in

Preconcentration and fluorometric detection of mercury ions using magnetic core-shell chitosan microspheres modified with a rhodamine spirolactam

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe core-shell structured magnetic chitosan microspheres (Rho-MCS) that were modified with a rhodamine spirolactam fluorescent probe. They are shown to be a viable fluorescent probe for the determination of mercury ion, and for its removal and preconcentration. The microspheres were characterized by FTIR, thermogravimetric analysis and high-resolution digital images, and these confirmed the successful loading with rhodamine probe. The microspheres represent excellent bare-eye colorimetric and fluorescent turn on probes for Hg(II) via a mechanism based on chelation-enhanced fluorescence. Hg(II) can be quantified with a limit of detection of 15 nM. The effects of pH, temperature, contact time and initial concentration on adsorption were also investigated. The results indicate that Rho-MCS possess high adsorption capacity (337 mg g−1) and superb removal capability (up to 97 %). A kinetic study shows that the adsorption mechanism can be described by a pseudo second-order equation, while the adsorption isotherm can be fit to a Langmuir model. Hg(II)-loaded Rho-MCS can be recycled by addition of ethylenediaminetetraacetic acid (EDTA). The capability for removal of Hg(II) was maintained above 86 % after five consecutive adsorption-desorption cycles.

The Rho-MCS microspheres modified with rhodamine spirolactam are shown to be viable turn-on fluorescence probe for the determination of Hg(II) and excellent adsorbent for its removal. It still maintains highly adsorption capacity after several regeneration cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sivaraman G, Anand T, Chellappa D (2012) Turn-on fluorescent chemosensor for Zn(II) via ring opening of rhodamine spirolactam and their live cell imaging. Analyst 137(24):5881–5884. doi:10.1039/c2an36209k

    Article  CAS  Google Scholar 

  2. Sivaraman G, Sathiyaraja V, Chellappa D (2014) Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. J Lumin 145:480–485. doi:10.1016/j.jlumin.2013.08.018

    Article  CAS  Google Scholar 

  3. Zhang T, Kim B, Levard C, Reinsch BC, Lowry GV, Deshusses MA, Kim H (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46(13):6950–6958. doi:10.1021/es203181m

    Article  CAS  Google Scholar 

  4. Ishihara N (1982) Minamata disease. Trace Elem Electrolytes 31(2):86–88. doi:10.5414/TEX01331

    Google Scholar 

  5. Laffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J, Amouroux D, Behra P (2011) Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. Environ Sci Technol 45(23):9910–9916. doi:10.1021/es202353m

    Article  CAS  Google Scholar 

  6. Hoyle I, Handy RD (2005) Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways. Aquat Toxicol 72(1–2):147–159. doi:10.1016/j.aquatox.2004.11.015

    Article  CAS  Google Scholar 

  7. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  8. Chiarle S, Ratto M, Rovatti M (2000) Mercury removal from water by ion exchange resins adsorption. Water Res 34(11):2971–2978. doi:10.1016/S0043-1354(00)00044-0

    Article  CAS  Google Scholar 

  9. Shen ZM, Ma J, Mei ZJ, Zhang JD (2010) Metal chlorides loaded on activated carbon to capture elemental mercury. J Environ Sci 22(11):1814–1819. doi:10.1016/S1001-0742(09)60324-7

    Article  CAS  Google Scholar 

  10. Johari K, Saman N, Mat H (2014) A comparative evaluation of mercury(II) adsorption equilibrium and kinetics onto silica gel and sulfur-functionalised silica gels adsorbents. Can J Chem Eng 92(6):1048–1058. doi:10.1002/cjce.21949

    Article  CAS  Google Scholar 

  11. Xiong CH, Yao CP (2009) Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chem Eng J 155(3):844–850. doi:10.1016/j.cej.2009.09.009

    Article  CAS  Google Scholar 

  12. Jainae K, Sanuwong K, Nuangjamnong J, Sukpirom N, Unob F (2010) Extraction and recovery of precious metal ions in wastewater by polystyrene-coated magnetic particles functionalized with 2-(3-(2-aminoethylthio)propylthio)ethanamine. Chem Eng J 160(2):586–593. doi:10.1016/j.cej.2010.03.080

    Article  CAS  Google Scholar 

  13. Wang XH, Deng WY, Xie YY, Wang CY (2013) Selective removal of mercury ions using a chitosan–poly(vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. Chem Eng J 228:232–242. doi:10.1016/j.cej.2013.04.104

    Article  CAS  Google Scholar 

  14. Mladenova EK, Dakova IG, Karadjova IB (2011) Chitosan membranes as sorbents for trace elements determination in surface waters. Environ Sci Pollut Res 18(9):1633–1643. doi:10.1007/s11356-011-0529-x

    Article  CAS  Google Scholar 

  15. Kushwaha S, Sreedhar B, Padmaja P (2010) Sorption of phenyl mercury, methyl mercury, and inorganic mercury onto chitosan and barbital immobilized chitosan: spectroscopic, potentiometric, kinetic, equilibrium, and selective desorption studies. J Chem Eng Data 55(11):4691–4698. doi:10.1021/je100317t

    Article  CAS  Google Scholar 

  16. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74. doi:10.1016/j.seppur.2003.10.004

    Article  CAS  Google Scholar 

  17. Meng QT, He C, Su WP, Zhang XL, Duan CY (2012) A new rhodamine-chitosan fluorescent material for the selective detection of Hg2+ in living cells and efficient adsorption of Hg2+ in natural water. Sens Actuators B 174:312–317. doi:10.1016/j.snb.2012.03.072

    Article  CAS  Google Scholar 

  18. Tan LJ, Wan AJ, Li HL (2013) Fluorescent chitosan complex nanosphere diazeniumdiolates as donors and sensitive real-time probes of nitric oxide. Analyst 138(3):879–886. doi:10.1039/c2an36548k

    Article  CAS  Google Scholar 

  19. Jiang DS, Long SY, Huang J (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem Eng J 25(1):15–23. doi:10.1016/j.bej.2005.03.007

    Article  Google Scholar 

  20. Nie R, Chang XJ, He Q, Hu Z, Li ZH (2009) Preparation of p-tert[(dimethylamino)methyl]-calix[4]arene functionalized aminopropylpolysiloxane resin for selective solid-phase extraction and preconcentration of metal ions. J Hazard Mater 169(1–3):203–209. doi:10.1016/j.jhazmat.2009.03.084

    Article  CAS  Google Scholar 

  21. Zheng H, Qian ZH, Xu L, Yuan FF, Lan LD, Xu JG (2006) Switching the recognition preference of rhodamine b spirolactam by replacing one atom: design of rhodamine b thiohydrazide for recognition of Hg(II) in aqueous solution. Org Lett 8(5):859–861. doi:10.1021/ol0529086

    Article  CAS  Google Scholar 

  22. Wang Y, Li B, Zhang L, Li P, Wang L, Zhang J (2012) Multifunctional magnetic mesoporous silica nanocomposites with improved sensing performance and effective removal ability toward Hg(II). Langmuir 28(2):1657–1662. doi:10.1021/la204494v

    Article  CAS  Google Scholar 

  23. Samuels RJ (1981) Solid state characterization of the structure of chitosan films. J Polym Sci Polym Phys Ed 19(7):1081–1105. doi:10.1002/pol.1981.180190706

    Article  CAS  Google Scholar 

  24. Yan FY, Wang M, Cao DL, Yang N, Fu Y, Chen L, Chen LG (2013) New fluorescent and colorimetric chemosensors based on the rhodamine detection of Hg2+ and Al3+ and application of imaging in living cells. Dyes Pigments 98(1):42–50. doi:10.1016/j.dyepig.2013.02.002

    Article  CAS  Google Scholar 

  25. Liu B (2014) Preparation and characterization of an optical sensor based on magnetic core and fluorescence “Off-On” probe for Hg(II) sensing and removal. Sensors Actuators B Chem 198:342–349

    Article  Google Scholar 

  26. Liu BY, Zeng F, Wu SZ, Wang JS, Tang FC (2013) Ratiometric sensing of mercury(II) based on a FRET process on silica core-shell nanoparticles acting as vehicles. Microchim Acta 180(9):845–853

    Article  CAS  Google Scholar 

  27. Li HT, He XD, Huang H, Lian SY, Liu Y, Kang ZH, Lee ST (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    Article  CAS  Google Scholar 

  28. Kuang SP, Wang ZZ, Liu J, Wu ZC (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219. doi:10.1016/j.jhazmat.2013.05.019

    Article  CAS  Google Scholar 

  29. Liu JP, Yang J, Li H, Lu F (2014) Fast response Hg(II) sensing and removal core-shell nanocomposite: construction, characterization and performance. Dyes Pigments 106:168–175. doi:10.1016/j.dyepig.2014.03.015

    Article  Google Scholar 

  30. Liu B (2014) Preparation and characterization of an optical sensor based on magnetic core and fluorescence “Off-On” probe for Hg(II) sensing and removal. Sens Actuators B 198:342–349. doi:10.1016/j.snb.2014.03.072

    Article  Google Scholar 

  31. Chen YT, Mu SY (2014) Core-shell structured Fe3O4 nanoparticles functionalized with rhodamine derived probe for the detection, adsorption and removal of Hg(II): a sensing system with ‘warning’ signal. Sens Actuators B 192:275–282. doi:10.1016/j.snb.2013.10.135

    Article  Google Scholar 

  32. Wang Y, Qi YX, Li YF, Wu JJ, Ma XJ, Yu C, Ji L (2013) Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J Hazard Mater 260:9–15. doi:10.1016/j.jhazmat.2013.05.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this manuscript was supported by the National Natural Science Foundation of China (Nos. 21174103, 21374078) and Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCYBJC18100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanyong Yan or Xuguang Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Yan, F., Zhou, X. et al. Preconcentration and fluorometric detection of mercury ions using magnetic core-shell chitosan microspheres modified with a rhodamine spirolactam. Microchim Acta 183, 319–327 (2016). https://doi.org/10.1007/s00604-015-1644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1644-z

Keywords

Navigation