Skip to main content
Log in

Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a dual-use sorbent for solid phase extraction (SPE) in combination with surface-enhanced Raman spectroscopy (SERS). The sorbent consists of calcium carbonate microparticles with incorporated silver nanoparticles (AgNPs) and magnetic nanoparticles (Fe3O4). It can be simply prepared, is cost-effective, disposable, and possesses high sorption capabilities together with a Raman enhancement of 109 in the best case. Following magnetic separation of the microsphere from the liquid sample, the sorbent matrix (CaCO3) is dissolved in acid so that the AgNPs and the analyte are released. This provides an optimal interaction between them and warrants a strong SERS signal. A new SPE-SERS protocol was worked out and applied to the following model analytes: Rhodamine 6G (a fluorescent dye; R6G), Photosens (a photodynamic dye), and sulfadimethoxine (an antibiotic). The first two possess a high Raman cross-section, while the last one displays comparatively low intrinsic Raman intensity. It is found that coating the surface of the sorbent with polyethyleneimine (a cationic polyelectrolyte) leads to a 2-fold increase in the sorption of Photosens (from 40% to 90%) and to a 6-fold enhancement of the SERS signal. The limits of detection for R6G, Photosens, and sulfadimethoxine (with 78%, 94%, and 41% sorption values, respectively) are 29 pM, 12 nM, and 69 nM, respectively. Raman enhancements are in the range between 106 and 109 depending on the analyte.

Calcium carbonate microparticles with embedded silver and magnetite nanoparticles are introduced as new SERS-active sorbent for solid phase extraction. Magnetic-based pre-concentration and subsequent release of both silver nanoparticles and analyte result in a significantly enhanced sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54. doi:10.1007/s00216-011-5631-x

    Article  CAS  Google Scholar 

  2. Markin AV, Markina NE, Goryacheva IY (2017) Raman spectroscopy based analysis inside photonic-crystal fibers. Trends Anal Chem 88:185–197. doi:10.1016/j.trac.2017.01.003

    Article  CAS  Google Scholar 

  3. Jahn M, Patze S, Hidi IJ, Knipper R, Radu AI, Mühlig A, Yüksel S, Peksa V, Weber K, Mayerhöfer T, Cialla-May D, Popp J (2016) Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141:756–793. doi:10.1039/C5AN02057C

    Article  CAS  Google Scholar 

  4. Li D, Qu L, Zhai W, Xue J, Fossey JS, Long Y (2011) Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ Sci Technol 45:4046–4052. doi:10.1021/es104155r

    Article  CAS  Google Scholar 

  5. Markina NE, Shalabay VV, Zakharevich AM, Markin AV (2016) Detection of sulfonamide drug in urine using liquid-liquid extraction and surface-enhanced Raman spectroscopy. Proc SPIE 9917:9917X. doi:10.1117/12.2228866

    Google Scholar 

  6. Shende C, Inscore F, Sengupta A, Stuart J, Farquharson S (2010) Rapid extraction and detection of trace Chlorpyrifos-methyl in orange juice by surface-enhanced Raman spectroscopy. Sens & Instrumen Food Qual 4:101–107. doi:10.1007/s11694-010-9100-6

    Article  Google Scholar 

  7. Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183:2677–2695. doi:10.1007/s00604-016-1930-4

    Article  CAS  Google Scholar 

  8. Lucht S, Murphy T, Schmidt H, Kronfeldt HD (2000) Optimized recipe for sol – gel-based SERS substrates. J Raman Spectrosc 31:1017–1022. doi:10.1002/1097-4555(200011)31:11<1017::AID-JRS638>3.0.CO;2-V

    Article  CAS  Google Scholar 

  9. Iancu V, Baia L, Tarcea N, Popp J, Baia M (2014) Towards TiO2–ag porous nanocomposites based SERS sensors for chemical pollutant detection. J Mol Struct 1073:51–57. doi:10.1016/j.molstruc.2014.05.026

    Article  CAS  Google Scholar 

  10. Yurova NS, Markina NE, Pozharov MV, Zakharevich AM, Rusanova TY, Markin AV (2016) SERS-active sorbent based on aluminum oxide loaded with silver nanoparticles. Colloids Surf A Physicochem Eng Asp 495:169–175. doi:10.1016/j.colsurfa.2016.02.006

    Article  CAS  Google Scholar 

  11. Aldeanueva-Potel P, Faoucher E, Alvarez-Puebla RA, Liz-Marzán LM, Brust M (2009) Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. Anal Chem 81:9233–9238. doi:10.1021/ac901333p

    Article  CAS  Google Scholar 

  12. Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Tu Y (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182:1775–1782. doi:10.1007/s00604-015-1514-8

    Article  CAS  Google Scholar 

  13. Qu LL, Geng YY, Bao ZN, Riaz S, Li H (2016) Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim Acta 183:1307–1313. doi:10.1007/s00604-016-1760-4

    Article  CAS  Google Scholar 

  14. Villa JE, Dos Santos DP, Poppi RJ (2016) Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 183:2745–2752. doi:10.1007/s00604-016-1918-0

    Article  CAS  Google Scholar 

  15. Guo Z, Chen L, Lv H, Yu Z, Zhao B (2014) Magnetic imprinted surface enhanced Raman scattering (MI-SERS) based ultrasensitive detection of ciprofloxacin from a mixed sample. Anal Methods 6:1627–1632. doi:10.1039/c3ay40866c

    Article  CAS  Google Scholar 

  16. Stetciura IY, Markin AV, Ponomarev AN, Yakimansky AV, Demina TS, Grandfils C, Volodkin DV, Gorin DA (2013) New surface-enhanced Raman scattering platforms: composite calcium carbonate microspheres coated with astralen and silver nanoparticles. Langmuir 29:4140–4147. doi:10.1021/la305117t

    Article  CAS  Google Scholar 

  17. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  18. German SV, Inozemtseva OA, Markin AV, Metvalli K, Khomutov GB, Gorin DA (2013) Synthesis of magnetite hydrosols in inert atmosphere. Colloid Journal 75:483–486. doi:10.1134/S1061933X13040042

    Article  CAS  Google Scholar 

  19. Svenskaya YI, Navolokin NA, Bucharskaya AB, Terentyuk GS, Kuz’mina AO, Burashnikova MM, Maslyakova GN, Lukyanets EA, Gorin DA (2014) Calcium carbonate microparticles containing a photosensitizer Photosens: preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies in Russia 9:398–409. doi:10.1134/S1995078014040181

    Article  CAS  Google Scholar 

  20. Svenskaya Y, Parakhonskiy B, Haase A, Atkin V, Lukyanets E, Gorin D, Antolini R (2013) Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys Chem 182:11–15. doi:10.1016/j.bpc.2013.07.006

    Article  CAS  Google Scholar 

  21. Volodkin D (2014) CaCO3 templated micro-beads and -capsules for bioapplications. Adv Colloid Interf Sci 207:306–324. doi:10.1016/j.cis.2014.04.001

    Article  CAS  Google Scholar 

  22. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir 20:3398–3406. doi:10.1021/la036177z

    Article  CAS  Google Scholar 

  23. Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V (2012) Poly-l-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering. Langmuir 28:13166–13171. doi:10.1021/la302383r

    Article  CAS  Google Scholar 

  24. Stetciura IY, Markin AV, Bratashov DN, Sukhorukov GB, Gorin DA (2014) Nanoencapsulated and microencapsulated SERS platforms for biomedical analysis. Curr Opin Pharmacol 18:149–158. doi:10.1016/j.coph.2014.10.002

    Article  CAS  Google Scholar 

  25. Ungurean A, Oltean M, David L, Leopold N, Prates Ramalho JP, Chis V (2014) Adsorption of sulfamethoxazole molecule on silver colloids: a joint SERS and DFT study. J Mol Struct 1073:71–76. doi:10.1016/j.molstruc.2014.05.074

    Article  CAS  Google Scholar 

  26. Parakhonskiy BV, Foss C, Carletti E, Fedel M, Haase A, Motta A, Migliaresi C, Antolini R (2013) Tailored intracellular delivery via a crystal phase transition in 400 nm vaterite particles. Biomater Sci 1:1273–1281. doi:10.1039/C3BM60141B

    Article  CAS  Google Scholar 

  27. Hidi IJ, Jahn M, Pletz MW, Weber K, Cialla-May D, Popp J (2016) Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique. J Phys Chem C 120:20613–20623. doi:10.1021/acs.jpcc.6b01005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Ministry of Science and Education (project 4.1063.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Markin.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markina, N.E., Markin, A.V., Zakharevich, A.M. et al. Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction. Microchim Acta 184, 3937–3944 (2017). https://doi.org/10.1007/s00604-017-2426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2426-6

Keywords

Navigation