Skip to main content
Log in

Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel electrochemical dopamine (DA) sensor based on a glassy carbon electrode (GCE) modified with a hybrid material composed of Cu(I) oxide hollow microspheres and carbon black. The hybrid material was synthesized in a mixed solvent composed of water and the deep eutectic solvent choline chloride/urea, and by in-situ reduction of Cu(II) by ascorbic acid. The surface morphology and structure of the materials were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic properties of the modified GCE toward DA oxidation in phosphate buffer solution of pH 5.7. The sensor displays a higher electrocatalytic activity toward DA oxidation compared to other modified electrodes. At a working potential of 0.25 V (vs. SCE), the sensor exhibits a rapid response (<3 s) and a wide linear range from 9.9 × 10−8 to 7.08 × 10−4 mol L−1. The detection limit is as low as 3.96 × 10−8 mol L−1 (S/N = 3). In addition to its high sensitivity, the sensor displays good reproducibility, long-term stability and fair selectivity.

A novel electrochemical dopamine sensor based on Cu(I) oxide hollow microspheres and carbon black (Cu2O HMS/CB) composite has been developed. The coating of CB obviously reduces the size of Cu2O HMS. The sensor exhibits good analytical performance for dopamine detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Staden JF, van Staden RIS (2012) Flow-injection analysis systems with different detection devices and other related techniques for the in vitro and in vivo determination of dopamine as neurotransmitter: a review. Talanta 102:34

    Article  Google Scholar 

  2. Zhang M, Liao CZ, Yao YL, Liu ZK, Gong FF, Yan F (2014) High-performance dopamine sensors based on whole graphene solution-gated transistors. Adv Funct Mater 24:978

    Article  CAS  Google Scholar 

  3. Lin L, Du JM, Li SJ, Yuan BQ, Han HX, Jing M, Xia N (2013) Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron 41:730

    Article  Google Scholar 

  4. Kim J, Jeon M, Paeng KJ, Paeng IR (2008) Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal Chim Acta 619:87

    Article  CAS  Google Scholar 

  5. Njagi J, Chernov MM, Leiter JC, Andreescu S (2010) Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal Chem 82:989

    Article  CAS  Google Scholar 

  6. Maina FK, Mathews TA (2010) Functional fast scan cyclic voltammetry assay to characterize dopamine D2 and D3 autoreceptors in the mouse striatum. ACS Chem Neurosci 1:450

    Article  CAS  Google Scholar 

  7. Kim HR, Kim TH, Hong SH, Kim HG (2012) Direct detection of tetrahydrobiopterin (BH4) and dopamine in rat brain using liquid chromatography coupled electrospray tandem mass spectrometry. Biochem Biophys Res Commun 419:632

    Article  CAS  Google Scholar 

  8. Nezhad MRH, Tashkhourian J, Khodaveisi J (2010) Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. J Iran Chem Soc 7:83

  9. Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 138:123

    Article  CAS  Google Scholar 

  10. Li N, Guo JZ, Liu B, Cui H, Mao LQ, Lin YQ (2009) Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle initiated chemiluminescence. Anal Chim Acta 645:48

    Article  CAS  Google Scholar 

  11. Cui R, Gu YP, Bao L, Zhao JY, Qi BP, Zhang ZL, Xie ZX, Pang DW (2012) Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal Chem 84:8932

    Article  CAS  Google Scholar 

  12. Keithley RB, Takmakov P, Bucher ES, Belle AM, Owesson-White CA, Park J, Wightman RM (2011) Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal Chem 83:3563

    Article  CAS  Google Scholar 

  13. Zheng G, Chen M, Liu XY, Zhou J, Xie J, Diao GW (2014) Self-assembled thiolated calix[n]arene (n = 4, 6, 8) films on gold electrodes and application for electrochemical determination dopamine. Electrochim Acta 136:301

    Article  CAS  Google Scholar 

  14. Palanisamy S, Ku SH, Chen SM (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180:1037

    Article  CAS  Google Scholar 

  15. Khan A, Khan AAP, Asiri AM, Rub MA, Rahman MM, Ghani SA (2014) In vitro studies of carbon fiber microbiosensor for dopamine neurotransmitter supported by copper-graphene oxide composite. Microchim Acta 181:1049

    Article  CAS  Google Scholar 

  16. Huang Y, Cheng CM, Tian XQ, Zheng BZ, Li Y, Yuan HY, Xiao D, Choi MMF (2013) Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode. Electrochim Acta 89:832

    Article  CAS  Google Scholar 

  17. Qiu JD, Xiong M, Liang RP, Peng HP, Liu F (2009) Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application. Biosens Bioelectron 24:2649

    Article  CAS  Google Scholar 

  18. Elhag S, Ibupoto ZH, Liu X, Nur O, Willander M (2014) Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode. Sensors Actuators B Chem 203:543

    Article  CAS  Google Scholar 

  19. Majidi MR, Asadpour-Zeynali K, Gholizadeh S (2010) Nanobiocomposite modified carbon-ceramic electrode based on nano-TiO2-plant tissue and its application for electrocatalytic oxidation of dopamine. Electroanalysis 22:1772

    Article  CAS  Google Scholar 

  20. Zhang L, Li H, Ni Y, Li J, Liao K, Zhao G (2009) Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun 11:812

    Article  CAS  Google Scholar 

  21. Song MJ, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80:1648

    Article  CAS  Google Scholar 

  22. Reitz E, Jia W, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482

    Article  CAS  Google Scholar 

  23. Guo Z, Seol ML, Kim MS, Ahn JH, Choi YK, Liu JH, Huang XJ (2012) Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors. Nanoscale 4:7525

    Article  CAS  Google Scholar 

  24. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206

    Article  CAS  Google Scholar 

  25. Reddy S, Kumara SBE, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78

    Article  CAS  Google Scholar 

  26. Yang S, Li G, Yin Y, Yang R, Li J, Qu L (2013) Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine. J Electroanal Chem 703:45

    Article  CAS  Google Scholar 

  27. Zhang F, Li Y, Gu Y, Wang Z, Wang C (2011) One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103

    Article  CAS  Google Scholar 

  28. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1

    Article  CAS  Google Scholar 

  29. Wang X, Hu C, Liu H, Du G, He X, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors Actuators B Chem 144:220

    Article  CAS  Google Scholar 

  30. Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126

    Article  CAS  Google Scholar 

  31. Jia W, Guo M, Zheng Z, Yu T, Wang Y, Rodriguez EG, Lei Y (2008) Vertically aligned CuO nanowires based electrode for amperometric detection of hydrogen peroxide. Electroanalysis 20:2153

    Article  CAS  Google Scholar 

  32. Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem Commun 11:278

    Article  CAS  Google Scholar 

  33. Zhang X, Wang G, Gu A, Wu H, Fang B (2008) Preparation of porous Cu2O octahedron and its application as L-Tyrosine sensors. Solid State Commun 148:525

    Article  CAS  Google Scholar 

  34. Wang B, Luo L, Ding Y, Zhao D, Zhang Q (2012) Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor. Colloids Surf B 97:51

    Article  CAS  Google Scholar 

  35. Khan SB, Faisal M, Rahman MM, Abdel-Latif IA, Ismail AA, Akhtar K, Al-Hajry A, Asiri AM, Alamry KA (2013) Highly sensitive and stable phenyl hydrazine chemical sensors based on CuO flower shapes and hollow spheres. New J Chem 37:1098

    Article  CAS  Google Scholar 

  36. Sui Y, Zhang Y, Fu W, Yang H, Zhao Q, Sun P, Ma D, Yuan M, Li Y, Zou G (2009) Low-temperature template-free synthesis of Cu2O hollow spheres. J Cryst Growth 311:2285

    Article  CAS  Google Scholar 

  37. Wei L, Fan YJ, Tian N, Zhou ZY, Zhao XQ, Mao BW, Sun SG (2012) Electrochemically shape-controlled synthesis in deep eutectic solvents — a new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity. J Phys Chem C 116:2040

    Article  CAS  Google Scholar 

  38. Wei L, Fan YJ, Wang HH, Tian N, Zhou ZY, Sun SG (2012) Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochim Acta 76:468

    Article  CAS  Google Scholar 

  39. Zhou LS, Shen FP, Tian XK, Wang DH, Zhang T, Chen W (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5:1564

    Article  CAS  Google Scholar 

  40. Zhu HT, Wang JX, Xu GY (2009) Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst Growth Des 9:633

    Article  CAS  Google Scholar 

  41. Feng L, Yao S, Zhao X, Yan L, Liu C, Xing W (2012) Electrocatalytic properties of Pd/C catalyst for formic acid electrooxidation promoted by europium oxide. J Power Sources 197:38

    Article  CAS  Google Scholar 

  42. Gattia DM, Antisari MV, Giorgi L, Marazzi R, Piscopiello E, Montone A, Bellitto S, Licoccia S, Traversa E (2009) Study of different nanostructured carbon supports for fuel cell catalysts. J Power Sources 194:243

    Article  Google Scholar 

  43. Zhang YQ, Fan YJ, Cheng L, Fan LL, Wang ZY, Zhong JP, Wu LN, Shen XC, Shi ZJ (2013) A novel glucose biosensor based on the immobilization of glucose oxidase on layer-by-layer assembly film of copper phthalocyanine functionalized graphene. Electrochim Acta 104:178

    Article  CAS  Google Scholar 

  44. Angeles GA, Lopez BP, Pardave MP, Silva MTR, Alegret S, Merkoci A (2008) Enhanced host-guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 46:898

    Article  Google Scholar 

  45. Niu XL, Yang W, Guo H, Ren J, Gao JZ (2013) Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Biosens Bioelectron 41:225

    Article  CAS  Google Scholar 

  46. Cao XH, Zhang LX, Cai WP, Li YQ (2010) Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode. Electrochem Commun 12:540

    Article  CAS  Google Scholar 

  47. Rahim A, Barros SBA, Kubota LT, Gushikem Y (2011) SiO2/C/Cu(II) phthalocyanine as a biomimetic catalyst for dopamine monooxygenase in the development of an amperometric sensor. Electrochim Acta 56:10116

    Article  CAS  Google Scholar 

  48. Kan XW, Zhou H, Li C, Zhu AH, Xing ZL, Zhao Z (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69

    Article  CAS  Google Scholar 

  49. Zhou YZ, Zhang HY, Xie HD, Chen B, Zhang L, Zheng XH, Jia P (2012) A novel sensor based on LaPO4 nanowires modified electrode for sensitive simultaneous determination of dopamine and uric acid. Electrochim Acta 75:360

    Article  CAS  Google Scholar 

  50. Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochemical sensors based on platinum electrodes modified with hybrid inorganic-organic coatings for determination of 4-nitrophenol and dopamine. Electrochim Acta 54:1932

    Article  CAS  Google Scholar 

  51. Wang W, Xu G, Cui XT, Sheng G, Luo X (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21463007, 21263002), Guangxi Natural Science Foundation of China (2013GXNSFAA019024, 2014GXNSFFA118003), the S&T Project of Guangxi Education Department of China (2013YB026), BAGUI Scholar Program (2014A001) and Project of Talents Highland of Guangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Jun Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LN., Tan, YL., Wang, L. et al. Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Microchim Acta 182, 1361–1369 (2015). https://doi.org/10.1007/s00604-015-1455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1455-2

Keywords

Navigation