Skip to main content
Log in

Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the first application of terahertz metamaterials acting as transducers for chemical sensors based on conducting polymers. In our feasibility study aimed at sensing of gaseous hydrochloric and ammonia, a two-dimensional sensor metamaterial consisting of an array of split-ring resonators on the surface of undoped silicon wafer was prepared. The surface of the resonator was coated with a 150-μm layer of polyaniline. Binding of hydrogen chloride to polyaniline leads to distinct changes in the resonance frequency of the metamaterial. Measurements can be performed both in the reflection and transmission mode. A numerical simulation of the response revealed an increase of both the real and the imaginary components of the dielectric function of the polyaniline film. These changes are attributed to the transition from emaraldine base to emeraldine salt. The results demonstrate a new approach for formation of highly sensitive transducers for chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  2. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    Article  CAS  Google Scholar 

  3. Hua B, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Article  Google Scholar 

  4. Trojanowicz M (2003) Application of conducting polymers in chemical analysis. Microchim Acta 143:75–91

    Article  CAS  Google Scholar 

  5. Heinze J, Frontana-Uribe BA, Ludwigs S (2011) Electrochemistry of conducting polymers - persistent models and new concepts. Chem Rev 110:4724–4771

    Article  Google Scholar 

  6. Inzelt G (2008) Conducting polymers. A new era in electrochemistry. Springer, Berlin

    Google Scholar 

  7. Tsakova V, Ivanov S, Lange U, Stoyanova A, Lyutov V, Mirsky VM (2010) Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition. Pure Appl Chem 83:345–358

    Article  Google Scholar 

  8. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    Article  CAS  Google Scholar 

  9. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87–113

    Article  CAS  Google Scholar 

  10. Rajesh AT, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B 136:275–286

    Article  CAS  Google Scholar 

  11. Deng Z, Stone DC, Thompson M (1997) Characterization of polymer films of pyrrole derivatives for chemical sensing by cyclic voltammetry, X-ray photoelectron spectroscopy and vapour sorption studies. Analyst 122:1129–1138

    Article  CAS  Google Scholar 

  12. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  CAS  Google Scholar 

  13. Pringsheim E, Terpetschnig E, Wolfbeis OS (1997) Optical sensing of pH using thin films of substituted polyanilines. Anal Chim Acta 357:247–252

    Article  CAS  Google Scholar 

  14. Samoylov AV, Mirsky VM, Hao Q, Swart C, Shirshov YM, Wolfbeis OS (2005) Nanometer-thick SPR sensor for gaseous HCl. Sens Actuators B 106:369–372

    Article  CAS  Google Scholar 

  15. Pernites R, Ponnapati R, Felipe MJ, Advincula R (2011) Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens Bioelectron 26:2766–2771

    Article  CAS  Google Scholar 

  16. Bobacka J, Ivaska A (2007) Ion sensors with conducting polymers as ion-to-electron transducers. In: Alegret S, Merkoci A (eds) Comprehensive analytical chemistry, vol. 49. Electrochemical sensor analysis. Elsevier, Amsterdam, pp 73–86

    Chapter  Google Scholar 

  17. Potyrailo RA, Morris WG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal Chem 79:45–51

    Article  CAS  Google Scholar 

  18. Lange U, Mirsky VM (2011) Chemiresistors based on conducting polymers: a review on measurement techniques. Anal Chim Acta 687:105–113

    Article  CAS  Google Scholar 

  19. Lange U, Mirsky VM (2011) Integrated electrochemical transistor as a fast recoverable gas sensor. Anal Chim Acta 687:7–11

    Article  CAS  Google Scholar 

  20. Lange U, Mirsky VM (2008) Separated analysis of bulk and contact resistance of conducting polymers: comparison of simultaneous 2- and 4-point measurements with impedance measurements. J Electroanal Chem 622:246–251

    Article  CAS  Google Scholar 

  21. Christie S, Scorsone E, Persaud K, Kvasnik F (2003) Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sens Actuat B 90:163–169

    Article  CAS  Google Scholar 

  22. Pirsa S, Alizadeh A (2012) A selective DMSO gas sensor based on nanostructured conducting polypyrrole doped with sulfonate anion. Sens Actuators B 168:303–309

    Article  CAS  Google Scholar 

  23. Engheta N, Ziolkowski NW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, New York

    Google Scholar 

  24. Klein MW, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Single-slit split-ring resonators at optical frequencies: limits of size scaling. Opt Lett 31:1259–1261

    Article  CAS  Google Scholar 

  25. Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96:107401.1–107401.4

    Article  Google Scholar 

  26. O’Hara J, Smirnova E, Azad AK, Chen H-T, Taylor AJ (2007) Effects of microstructure variations on macroscopic Terahertz metafilm properties. Act Passive Electron Components. doi:10.1155/2007/49691

    Google Scholar 

  27. Stejskal J, Gilbert RG (2002) Polyaniline. A preparation of a conducting polymer. Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  28. Ziemann E, Ganichev SD, Yassievich IN, Perel VI, Prettl W (2000) Characterization of deep impurities in semiconductors by terahertz tunneling ionization. J Appl Phys 87:3843–3849

    Article  CAS  Google Scholar 

  29. Karch J, Olbrich P, Schmalzbauer M, Zoth C, Brinsteiner C, Fehrenbacher M, Wurstbauer U, Glazov MM, Tarasenko SA, Ivchenko EL, Weiss D, Eroms J, Ganichev SD (2010) Dynamic Hall effect driven by circularly polarized light in a graphene layer. Phys Rev Lett 97:227402.1–227402.4

    Google Scholar 

  30. Ganichev SD, Prettl W (2006) Intense terahertz excitation of semiconductors. Univ Press, Oxford

    Google Scholar 

  31. Syed AA, Dinesan MK (1991) Review: polyaniline - a novel polymeric material. Talanta 38:815–837

    Article  CAS  Google Scholar 

  32. Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH, Boreman GD, Raschke MB (2012) Optical dielectric function of gold. Phys Rev B86:235147–235147

    Article  Google Scholar 

  33. Nguema E, Vigneras V, Miane JL, Mounaix P (2008) Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy. Eur Polym J 44:124–129

    Article  CAS  Google Scholar 

  34. Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS (2005) Optical ozone sensing properties of poly(2-chloroaniline), poly(N-methylaniline) and polyaniline films. Sens Actuators B 108:528–534

    Article  CAS  Google Scholar 

  35. Mirsky VM, Kulikov V, Hao Q, Wolfbeis OS (2004) Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers. Macromol Rapid Commun 2004(25):253–258

    Article  Google Scholar 

  36. Piletsky SA, Panasyuk TL, Piletskaya EV, Elskaya AV, Pringsheim E, Wolfbeis OS (2000) Polyaniline-coated micro titer plates for use in longwave optical bioassays. Fresenius J Anal Chem 366:807–810

    Article  CAS  Google Scholar 

  37. Haynes A, Gouma P-I (2009) Polyaniline-based environmental gas sensors. In: Baraton M-I (ed) Sensors for environment, health and security. Springer, Berlin, pp 451–459

    Chapter  Google Scholar 

  38. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523

    Article  CAS  Google Scholar 

  39. Jansen C, Al-Naib IAI, Born N, Koch M (2011) Terahertz metasurfaces with high Q-factors. Appl Phys Lett 98:051109.1–051109.3

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Linz for preparing the SRR arrays, Prof. R. Huber, Prof. M. Koch and Dr. C. Jansen for fruitful discussions, Dr. U. Lange for participating in preliminary experiments and Prof. J. Acker for the measurements of polymer thickness. We thank the DFG (SFB689) and Linkage Grant of IB of BMBF at DLR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Mirsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drexler, C., Shishkanova, T.V., Lange, C. et al. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer. Microchim Acta 181, 1857–1862 (2014). https://doi.org/10.1007/s00604-014-1263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1263-0

Keywords

Navigation