Skip to main content

Advertisement

Log in

Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a highly sensitive electrochemiluminescence (ECL) based method for the determination of the human immunodeficiency virus-1 (HIV-1) gene. A long-range self-assembled double strand DNA (ds-DNA) is used as a carrier, and the ruthenium complex Ru(phen)3 2+ as an ECL indicator for signal amplification. The thiolated ss-DNA serving as a capture probe is firstly self-assembled on the surface of a gold electrode. After the target HIV-1 gene is completely hybridized with the capture probe, two previously hybridized auxiliary probes are hybridized with the target HIV-1 gene to form long-range supersandwich ds-DNA polymers on the surface of the electrode. Finally, the ECL indicator is intercalated into the supersandwich ds-DNA grooves. This results in a strongly increased ECL in tripropylamine solution because a large fraction of the intercalator is intercalated into supersandwich ds-DNA. The results showed that the increased ECL intensity is directly related to the logarithm of the concentration of the HIV-1 gene in the range from 0.1 pM to 0.1 nM, with a detection limit of 0.022 pM and using only 10 μL of analyte samples. The method can effectively discriminate target HIV-1 gene (a perfectly matched ss-DNA) from a 2-base mismatched ss-DNA. This work demonstrates that the high sensitivity and selectivity of an ECL DNA biosensor can be largely improved by using supersandwich ds-DNA along with ECL indicators.

The method can effectively discriminate target HIV-1 gene (a perfectly matched ss-DNA) from a 2-base mismatched ss-DNA. The high sensitivity and selectivity of electrochemiluminescence DNA biosensor can be largely improved by using supersandwich ds-DNA along with ECL indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hvastkovs EG, Buttry DA (2007) Electrochemical detection of DNA hybridization via bis-intercalation of a naphthylimide-functionalized viologen dimer. Anal Chem 79:6922–6926

    Article  CAS  Google Scholar 

  2. Wang J (2002) Electrochemical nucleic acid biosensor. Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  3. Benoit V, Steel A, Torres M, Yu YY, Yang HJ, Cooper J (2001) Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays. Anal Chem 73:2412–2420

    Article  CAS  Google Scholar 

  4. Dharmadi Y, Gonzales R (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20:1309–1324

    Article  CAS  Google Scholar 

  5. Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165

    Article  CAS  Google Scholar 

  6. Zhao XJ, Tapec-Dytioco R, Tan WH (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125:11474–11475

    Article  CAS  Google Scholar 

  7. Ahn S, Walt DR (2005) Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. Anal Chem 77:5041–5047

    Article  CAS  Google Scholar 

  8. Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  9. Gasparac R, Taft BJ, Lapierre-Delvin MA, Lazareck AD, Xu JM, Kelley SO (2004) Ultrasensitive electrocatalytic DNA detection at two-and three-dimensional nanoelectrodes. J Am Chem Soc 126:12270–12271

    Article  CAS  Google Scholar 

  10. Xu XH, Yang HC, Mallouk TE, Bard AJ (1994) Immobilization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection. J Am Chem Soc 116:8386–8387

    Article  CAS  Google Scholar 

  11. Miao WJ, Bard AJ (2003) Electrogenerated chemiluminescence. 72. determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2′-bipyridyl)ruthenium(II) labels. Anal Chem 75:5825–5834

    Article  CAS  Google Scholar 

  12. Su XD, Robelek R, Wu YJ, Wang GY, Knoll W (2004) Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein. Anal Chem 76:489–494

    Article  CAS  Google Scholar 

  13. Ito M, Nakamura F, Baba A, Tamada K, Ushijima H, Lau KHA, Manna A, Knoll W (2007) Enhancement of surface plasmon resonance signals by gold nanoparticles on high-density DNA microarrays. J Phys Chem C 111:11653–11662

    Article  CAS  Google Scholar 

  14. Wang H, Zhang CX, Li Y, Qi HL (2006) Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal Chim Acta 575:205–211

    Article  CAS  Google Scholar 

  15. Li Y, Qi HL, Fang F, Zhang CX (2007) Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl)ruthenium derivative tags. Talanta 72:1704–1709

    Article  CAS  Google Scholar 

  16. Ma F, Zhang Y, Qi HL, Gao Q, Zhang CX, Miao WJ (2012) Ultrasensitive electrogenerated chemiluminescence biosensor for the determination of mercury ion incorporating G4 PAMAM dendrimer and Hg(II)-specific oligonucleotide. Biosens Bioelectron 32:37–42

    Article  Google Scholar 

  17. Zhang J, Qi HL, Li Y, Yang J, Gao Q, Zhang CX (2008) Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Anal Chem 80:2888–2894

    Article  CAS  Google Scholar 

  18. Yin XB, Xin YY, Zhao Y (2009) Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)3 2+-double-strand DNA composite film electrode. Anal Chem 81:9299–9305

    Article  CAS  Google Scholar 

  19. Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348

    Article  CAS  Google Scholar 

  20. Yuan T, Liu ZY, Hu LZ, Zhang L, Xu GB (2011) Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chem Commun 47:11951–11953

    Article  CAS  Google Scholar 

  21. Gui GF, Zhuo Y, Chai YQ, Liao N, Zhao M, Han J, Zhu Q, Yuan R, Xiang Y (2013) Supersandwich-type electrochemiluminescent aptasensor based on Ru(phen)3 2+ functionalized hollow gold nanoparticles as signal-amplifying tags. Biosens Bioelectron 47:524–529

    Article  CAS  Google Scholar 

  22. Chen Y, Xu J, Su J, Xiang Y, Yuan R, Chai YQ (2012) In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Anal Chem 84:7750–7755

    Article  CAS  Google Scholar 

  23. Chen X, Hong CY, Lin YH, Chen JH, Chen GN, Yang HH (2012) Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Anal Chem 84:8277–8283

    Article  CAS  Google Scholar 

  24. Qi HL, Zhang Y, Peng YG, Zhang CX (2008) Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta 75:684–690

    Article  CAS  Google Scholar 

  25. Yin BC, Wu D, Ye BC (2010) Sensitive DNA-based electrochemical strategy for trace Bleomycin detection. Anal Chem 82:8272–8277

    Article  CAS  Google Scholar 

  26. Li GJ, Liu LH, Qi XW, Guo YQ, Sun W, Li XL (2012) Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA. Electrochim Acta 63:312–317

    Article  CAS  Google Scholar 

  27. Huo ZH, Zhou YL, Liu Q, He XL, Liang Y, Xu MT (2011) Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchim Acta 173:119–125

    Article  CAS  Google Scholar 

  28. Fu YZ, Yuan R, Xu L, Chai YQ, Zhong X, Tang DP (2005) Indicator free DNA hybridization detection via EIS based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate. Biochem Eng J 23:37–44

    Article  CAS  Google Scholar 

  29. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947

    Article  CAS  Google Scholar 

  30. Li Y, Qi HL, Gao Q, Zhang CX (2011) Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosens Bioelectron 26:2733–2736

    Article  CAS  Google Scholar 

  31. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  Google Scholar 

  32. Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  33. Zhou LY, Zhang XY, Wang GL, Jiao XX, Luo HQ, Li NB (2012) A simple and label-free electrochemical biosensor for DNA detection based on the super-sandwich assay. Analyst 137:5071–5075

    Article  CAS  Google Scholar 

  34. Zhang DD, Peng YG, Qi HL, Gao Q, Zhang CX (2010) Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron 25:1088–1094

    Article  CAS  Google Scholar 

  35. Li Y, Qi HL, Yang J, Zhang CX (2009) Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag. Microchim Acta 164:69–76

    Article  CAS  Google Scholar 

  36. Gao M, Qi HL, Gao Q, Zhang CX (2008) Electrochemical detection of DNA hybridization based on the probe labeled with carbon-nanotubes loaded with silver nanoparticles. Electroanalysis 20:123–130

    Article  CAS  Google Scholar 

  37. Bi S, Li L, Zhang SS (2010) Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Anal Chem 82:9447–9454

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Science Foundations of China (No. 21027007, 21275095) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxiao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, S., Li, Z., Qi, H. et al. Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene. Microchim Acta 181, 1293–1300 (2014). https://doi.org/10.1007/s00604-014-1252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1252-3

Keywords

Navigation