Skip to main content
Log in

Direct electrochemistry and electrocatalysis of hemoglobin on a glassy carbon electrode modified with poly(ethylene glycol diglycidyl ether) and gold nanoparticles on a quaternized cellulose support. A sensor for hydrogen peroxide and nitric oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with gold nanoparticles (Au-NPs) on a quaternized cellulose support in a film composed of poly(ethylene glycol diglycidyl ether) (PEGDGE), and Hb was immobilized on the Au-NPs. The sensor film was characterized by UV–vis spectra, scanning electron microscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry of the Hb in the Au@Qc/PEGDGE film revealed a pair of well-defined and quasi reversible peaks for the protein heme Fe(III)/Fe(II) redox couple at about −0.333 V (vs. SCE). The sensor film also exhibited good electrocatalytic activity for the reduction of nitric oxide and hydrogen peroxide. The amperometric response of the biosensor depends linearly on the concentration of nitric oxide in the 0.9 to 160 μM range, and the detection limit is as low as 12 nM (at 3σ). The response to hydrogen peroxide is linear in the 59 nM to 4.6 μM concentration range, and the detection limit is 16 nM (at 3σ). This biosensor is sensitive, reproducible, and long-term stable.

An electrochemical biosensor based on the immobilization of hemoglobin in Au@Qc NPs /Poly ethylene glycol diglycidyl ether composite film is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li P, Ding Y, Lu Z et al (2013) Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing. Talanta 115:228

    Article  CAS  Google Scholar 

  2. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245

    Article  CAS  Google Scholar 

  3. Shi X, Gu W, Li B et al (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1

    Article  CAS  Google Scholar 

  4. Chen S, Yuan R, Chai Y et al (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15

    Article  CAS  Google Scholar 

  5. Scheller FW, Bistolas N, Liu S et al (2005) Thirty years of haemoglobin electrochemistry. Adv Colloid Interface Sci 116:111

    Article  CAS  Google Scholar 

  6. Wang YH, Yu CM, Pan ZQ et al (2013) A gold electrode modified with hemoglobin and the chitosan@ Fe3O4 nanocomposite particles for direct electro- chemistry of hydrogen peroxide. Microchim Acta 180:659

    Article  CAS  Google Scholar 

  7. Pang H, Gao F, Chen Q et al (2012) Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans 41:5862

    Article  CAS  Google Scholar 

  8. Li SJ, Shi YF, Liu L et al (2012) Electrostatic self-assembly for preparation of sulfonated graphene/gold nanoparticle hybrids and their application for hydrogen peroxide sensing. Electrochim Acta 85:628

    Article  CAS  Google Scholar 

  9. Ren L, Dong J, Cheng X et al (2013) Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Microchim Acta 180:1333

    Article  CAS  Google Scholar 

  10. Chen H, Wang Y, Wang Y et al (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 47:763

    Article  CAS  Google Scholar 

  11. Dimitrijevic NM, Bartels DM, Jonah CD et al (2001) Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J Phys Chem B 105:954

    Article  CAS  Google Scholar 

  12. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293

    Article  CAS  Google Scholar 

  13. Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739

    Article  CAS  Google Scholar 

  14. Park DH, Kim MS, Joo J (2010) Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications. Chem So Rev 39:2439

    Article  CAS  Google Scholar 

  15. Chen PJ, Hu SH, Fan CT et al (2013) A novel multifunctional nano-platform with enhanced anti-cancer and photoacoustic imaging modalities using gold-nanorod-filled silica nanobeads. Chem Commun 49:892

    Article  CAS  Google Scholar 

  16. Panigrahi S, Basu S, Praharaj S et al (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596

    Article  CAS  Google Scholar 

  17. Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 4580–4598

  18. Saha S, Pal A, Kundu S et al (2009) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885

    Article  Google Scholar 

  19. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074

    Article  CAS  Google Scholar 

  20. Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material]. Angew Chem In Ed 44:3358

    Article  CAS  Google Scholar 

  21. Niculescu M, Nistor C, Frébort I, Pec P, Mattiasson B, Csöregi E (2000) Redox hydrogel-based amperometric bienzyme electrodes for fish freshness monitoring. Anal Chem 72:1591

    Article  CAS  Google Scholar 

  22. Belfer S, Purinson Y, Fainshtein R, Radchenko Y, Kedem O (1998) Surface modification of commercial composite polyamide reverse osmosis membranes. J Membr Sci 139:175

    Article  CAS  Google Scholar 

  23. Asca F, Gorton L, Wagner JB, Nöll G (2008) Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes. Biosens Bioelectron 24:272

    Article  Google Scholar 

  24. Lu X, Xu Y, Zheng C, Zhang G, Su Z (2006) Ethylene glycol diglycidyl ether as a protein cross-linker: a case study for cross-linking of hemoglobin. J Chem Technol Biotechnol 81:767

    Article  CAS  Google Scholar 

  25. Vasylieva N, Barnych B, Meiller A, Maucler C, Pollegioni L, Lin JS, Marinesco S (2011) Covalent enzyme immobilization by poly (ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosen Bioelectron 26:3993

    Article  CAS  Google Scholar 

  26. Song Y, Sun Y, Zhang X et al (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259

    Article  CAS  Google Scholar 

  27. George P, Hanania G (1953) A spectrophotometric study of ionizations in methaemoglobin. Biochem J 55:236

    CAS  Google Scholar 

  28. Bobacka J, Lewenstam A, Ivaska A (2000) Electrochemical impedance spectroscopy of oxidized poly (3, 4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 489:17

    Article  CAS  Google Scholar 

  29. Murray RW, Bard AJ (1984) Electroanalytical chemistry. J Electroanal Chem 13:191

    CAS  Google Scholar 

  30. Muirhead H, Perutz MF (1963) Structure of haemoglobin. A three-dimensional Fourier synthesis of reduced human heamoglobin at 5.5 A resolution. Nature 199:633

    Article  CAS  Google Scholar 

  31. Trushina E, Oda R, Landers J, McMurray C (1997) Determination of nitrite and nitrate reduction by capillary ion electrophoresis. Electrophoresis 18:1890

    Article  CAS  Google Scholar 

  32. Liu HH, Tian ZQ, Lu ZX, Zhang ZL, Zhang M, Pang DW (2004) Direct electrochem-istry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens Bioelectron 20:294

    Article  CAS  Google Scholar 

  33. Bayachou M, Lin R, Cho W, Farmer PJ (1998) Electrochemical reduction of NO by myoglobin in surfactant film:characterization and reactivity of the nitroxyl (NO-) Adduct. J Am Chem Soc 120:9888

    Article  CAS  Google Scholar 

  34. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198

    Article  CAS  Google Scholar 

  35. Xu YX, Hu CG, Hu SS (2010) A reagentless nitric oxide biosensor based on the direct electrochemistry of hemoglobin adsorbed on the gold colloids modified carbon paste electrode. Sens Actuators B Chem 148:253

    Article  CAS  Google Scholar 

  36. Liu KP, Zhang JJ, Yang GH, Wang CM, Zhu JJ (2010) Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun 12:402–405

    Article  CAS  Google Scholar 

  37. Chen HM, Zhao GC (2012) Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing. J Solid State Electrochem 16:3289

    Article  CAS  Google Scholar 

  38. Liu X, Shang L, Sun Z et al (2005) Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide[J]. J Biochem Biophys Methods 62:143

    Article  CAS  Google Scholar 

  39. Pang J, Fan C, Liu X et al (2003) A nitric oxide biosensor based on the multi-assembly of hemoglobin/montmorillonite/polyvinyl alcohol at a pyrolytic graphite electrode[J]. Biosens Bioelectron 19:441

    Article  CAS  Google Scholar 

  40. Sun A, Sheng Q, Zheng J (2012) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene–chitosan nanocomposite film. Appl Biochem Biotechnol 166:764

    Article  CAS  Google Scholar 

  41. Li J, Tang J, Zhou L, Han X, Liu H (2012) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on polyacrylamide-P123 film modified glassy carbon electrode. Bioel Ectrochemistry 86:60

    Google Scholar 

  42. Zhang Y, Sun X, Jia N (2011) Direct electrochemistry and electrocatalysis of hemoglobin immobilized into poly (lactic-co-glycolic acid)/room temperature ionic liquid composite film. Sens Actuators B Chem 157:527

    Article  CAS  Google Scholar 

  43. Li J, Yuan R, Chai Y et al (2010) Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta 171:125

    Article  CAS  Google Scholar 

  44. Song J, Xu JM, Zhao PS et al (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim Acta 172:117

    Article  CAS  Google Scholar 

  45. Xu J, Liu C, Wu Z (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film[J]. Microchim Acta 172:425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the NSF of China (Grants No. 21275123 and 20975088 for J. Fei, 21105085 and 31270988 for B. Feng), Project of Hunan Provincial Natural Science Foundation of China (14JJ1019 and 12JJ7002), Research Fund for the Doctoral Program of Higher Education of China, Ministry of Education of China (20134301110005), Hunan Provincial Innovation Foundation For Postgraduate (CX2012B268) and National Training Programs of Innovation and Entrepreneurship for Undergraduates (201310530006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Fei or Bo Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Nie, M., He, X. et al. Direct electrochemistry and electrocatalysis of hemoglobin on a glassy carbon electrode modified with poly(ethylene glycol diglycidyl ether) and gold nanoparticles on a quaternized cellulose support. A sensor for hydrogen peroxide and nitric oxide. Microchim Acta 181, 1541–1549 (2014). https://doi.org/10.1007/s00604-014-1228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1228-3

Keywords

Navigation