Skip to main content
Log in

Characterization of an assortment of commercially available multiwalled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The objective of this study was to characterize an assortment of as received, commercially available, non-functionalized multiwalled carbon nanotubes (MWCNT) samples (n = 24) using thermogravimetric analysis, energy dispersive X-ray fluorescence spectrometry, high-resolution transmission electron microscopy and scanning electron microscopy. Each sample was assigned to one of six types based on nominal length and diameter. Some of the samples from the product assortment exhibited significant differences in purity and morphology from their nominal values. Variability in the physicochemical properties of MWCNTs may be a significant factor in why many toxicological investigations have findings that are difficult to reproduce. Therefore, it is strongly recommended that investigators studying these materials present characterization information in addition to providing their source.

TGA and XRF purity by type of MWCNT sample. The objective of this study was to characterize an assortment of commercially available, non-functionalized of multiwalled carbon nanotubes (MWCNT) samples using thermogravimetric analysis, energy dispersive X-ray fluorescence spectrometry, high-resolution transmission electron microscopy and scanning electron microscopy. Variability in the physicochemical properties of MWCNTs may be a significant factor in why many toxicological investigations have findings that are difficult to reproduce. Therefore, it is strongly recommended that investigators studying these materials present characterization information with their research findings in addition to providing their source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sato Y, Yokoyama A, K-i S, Akimoto Y, S-i O, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 1:176–182

    Article  CAS  Google Scholar 

  2. Scheibe B, Borowiak-Palen E, Kalenczuk RJ (2010) Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization. Mater Charact 61:185–191

    Article  CAS  Google Scholar 

  3. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44(1031–1047)

    Google Scholar 

  4. Thayer AM (2007) Carbon nanotubes by the metric ton: anticipating new commercial applications, producers increase capacity. Chem Eng News 85(46):29–35

    Article  Google Scholar 

  5. Vittorio O, Raffa V, Cuschieri A (2009) Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotunes with human neuroblastoma cells. Nanomed Nanotechnol Biol Med 5:424–431

    Article  CAS  Google Scholar 

  6. Kaur A, Gupta U (2009) A review on applications of nanoparticles for the preconcentration of environmental pollutants. J Mater Chem 19:8279–8289

    Article  CAS  Google Scholar 

  7. Hartman KB, Wilson LJ, Rosenblum MG (2008) Detecting and treating cancer with nanotechnology. Mol Diagn Ther 12:1–14

    Article  CAS  Google Scholar 

  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  9. Geys J, Nemery B, Hoet PHM (2010) Assay conditions can influence the outcome of cytotoxicity tests of nanomaterials: better assay characterization is needed to compare studies. Toxicol Vitr 24:620–629

    Article  CAS  Google Scholar 

  10. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-walled carbon nanotube. J Toxicol Sci 33:105–116

    Article  CAS  Google Scholar 

  11. Maynard AD, Aitken RJ, Butz T, Colvin V, Oberdörster KDG, Philbert MA, Ryan J, Seaton A, Stone V, Tingle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  12. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon naotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  Google Scholar 

  13. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2

  14. Card JW, Magnuson BA (2010) A method to assess the quality of studies that examine the toxicity of enginereered nanomaterials. Int J Toxicol 29(4):402–410

    Article  CAS  Google Scholar 

  15. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abnominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  Google Scholar 

  16. Nemmar A, Hoet PHM, Vandervoort P, Dinsdale D, Nemery B, Hoylaerts MF (2007) Enhanced peripheral thrombogenicity after lung inflammation is mediated by platelet-leukocyte activation: role of P-selectin. J Thromb Haemost 5:1217–1226

    Article  CAS  Google Scholar 

  17. Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-walled carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    Article  CAS  Google Scholar 

  18. Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A (2009) Induction of mesothelioma by a single intrascrotal administration of multi-walled carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34:65–76

    Article  CAS  Google Scholar 

  19. Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D (2009) Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in peritoneal cavity of the rat. Toxicol Sci 110:442–448

    Article  CAS  Google Scholar 

  20. Sayes CM, Warheit DB (2009) Characterization of nanomaterials for toxicity assessment. WIREs Nanomedicine Nanobiotechnol 1:660–670

    Article  CAS  Google Scholar 

  21. Zuin S, Pojana G, Marcomini A (2007) Effect-Oriented Physicochemical Characterization of Nanomaterials. In: Monteiro-Riviere NA, Tran CL (eds) Nanotoxicology: characterization, dosing, and health effects. Informa Healthcare USA, Inc., New York, pp 19–57

    Chapter  Google Scholar 

  22. Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, Wilson LJ, Moussa F (2010) In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 5:424–431

    Google Scholar 

  23. Omrani A, Rostami AA, Khostavan S, Vazifeshenas Y (2012) Preparation, characterization and application of advanced isoconversional kinetics to epoxy/1,4-bis(3-aminopropoxy) butane/MWCNT nanocomposite. Compos A Appl Sci Manuf 43(3):381–387

    Article  CAS  Google Scholar 

  24. Venkatesan J, Ryu B, Sudha PN, Kim SK (2012) Preparation and characterization of chitosan-carbon nanotube scaffolids for bone tissue engineering. Int J Biol Macromol 50(2):393–402

    Article  CAS  Google Scholar 

  25. Cañete-Rosales P, Ortega V, Alvarez-Lueje A, Bollo S, Gonzalez M, Anson A, Martinez MT (2012) Influence of size and oxidative treatments of multi-walled carbon nanotubes or their electrocatalytic properties. Electrochim Acta 62:163–171

    Article  Google Scholar 

  26. Gupta A, Choudhary V (2012) Effect of multiwall carbon nanotubes on thermomechanical and electrical properties of poly(trimethylene terephtalate). J Appl Polym Sci 123(3):1548–1556

    Article  CAS  Google Scholar 

  27. ISO. International Standard 10808. Nanotechnologies—Characterization of nanoparticles in inhalation exposure chambers for inhalation toxicity testing. Reference number ISO 10808:2010(E)

  28. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxic Environ Health A 66:1909–1926

    Article  CAS  Google Scholar 

  29. Kayat J, Gajbhiye V, Tekade RK, Jain NK (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine Nanotechnol Biol Med 7:40–49

    Article  CAS  Google Scholar 

  30. Mansfield E, Kar A, Hooker SA (2010) Applications of TGA in quality control of SWCNTs. Anal Bioanal Chem 396:1071–1077

    Article  CAS  Google Scholar 

  31. Bom D, Andrews R, Jacques D, Anthony H, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2(6):615–619

    Article  CAS  Google Scholar 

  32. Annamalai SK, Palani B, Chandrasekara KP (2012) Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Colloids Surf, A Physicochem Eng Asp 395:207–216

    Article  CAS  Google Scholar 

  33. Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chem Phys Lett 374:53–58

    Article  CAS  Google Scholar 

  34. Trigueiro JPC, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, Lacerda RG, Ladeira LO, Liu JW, Frost RL, George GA (2007) Purity evaluation of carbon nanotube materials by thermogravimetric. TEM SEM Methods J Nanosci Nanotechnol 7:3477–3486

    Article  CAS  Google Scholar 

  35. Xue B, Liu R, Huang W-Z, Zheng Y-F, Xu Z-D (2009) Growth and characterization of bamboo-like multiwalled carbon nanotunes over Cu/Al2O3 catalyst. J Mater Sci 44:4040–4046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This analytical work was funded in full by the National Institute of Environmental Health Sciences, National Institute of Health, Contract Number: N01-ES-65554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, K.E., Han, L., McWilliams, A.C. et al. Characterization of an assortment of commercially available multiwalled carbon nanotubes. Microchim Acta 181, 171–179 (2014). https://doi.org/10.1007/s00604-013-1088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1088-2

Keywords

Navigation