Skip to main content
Log in

Applications of TGA in quality control of SWCNTs

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Carbon nanotubes exhibit a range of chemistries, including mixtures of different nanotube diameters, lengths, and chiralities coupled with various concentrations of metallic and non-nanotube-carbon impurities. The performance of a given material for a specific application depends on the chemistry, which is dictated in large part by the manufacturing process. Here, thermogravimetric analysis is utilized as a bulk characterization method for determining nanotube quality after manufacturing. The application of thermogravimetric analysis for quantifying basic nanotube chemistry is described (e.g., carbon-to-metal content, homogeneity). In addition, extension of the method to analyze specific nanotube properties (i.e., length and diameter) is reported. Results indicate that thermogravimetric analysis is sufficiently sensitive to enable quality control at both the macro-scale (carbon-to-metal ratio) and nano-scale (single-walled to multi-walled) and can detect subtle modifications in manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  2. de Heer WA (2004) MRS Bulletin 281-285

  3. Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Heidelberg

    Google Scholar 

  4. Freiman S, Hooker S, Migler K, Arepali S (2008) Measurement issues in single wall carbon nanotubes, special publication 960-19 ed

  5. Fagan JA, Becker ML, Chun J, Nie P, Bauer BJ, Simpson JR, Hight Walker AR, Hobbie EK (2008) Langmuir 24:13880–13889

    Article  CAS  Google Scholar 

  6. Fagan JA, Becker ML, Chun J, Hobbie EK (2008) Adv Mater 20:1609–1613

    Article  CAS  Google Scholar 

  7. Trigueiro JPC, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, Lacerda RG, Ladeira LO, Liu J-W, Frost RL, George GA (2007) J Nanosci Nanotech 7:3477–3486

    Article  CAS  Google Scholar 

  8. Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Chem Phys Lett 374:53–58

    Article  CAS  Google Scholar 

  9. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) Adv Mater 11:1354–1358

    Article  CAS  Google Scholar 

  10. Nikolaev P (2004) J Nanosci Nanotech 4:307–316

    Article  CAS  Google Scholar 

  11. Lolli G, Zhang L, Balzano L, Sakulchaicharoen N, Tan Y, Resasco DE (2006) J Phys Chem B 110:2108–2115

    Article  CAS  Google Scholar 

  12. Zhou W, Xie S, Sun L, Tang D, Li Y, Liu Z, Ci L, Zou X, Wang G, Tan P, Dong X, Xu B, Zhao B (2002) Appl Phys Lett 80:2553–2555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Mansfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansfield, E., Kar, A. & Hooker, S.A. Applications of TGA in quality control of SWCNTs. Anal Bioanal Chem 396, 1071–1077 (2010). https://doi.org/10.1007/s00216-009-3319-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3319-2

Keywords

Navigation