Skip to main content

Advertisement

Log in

An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

c pj :

Specific heat at constant pressure of layer j

c p :

Specific heat at constant pressure of air

c p0 :

Initial value of c p

c v :

Specific heat at constant volume of air

c v0 :

Initial value of c v

CD :

Charging to discharging time ratio

e :

Subscript that denotes gas state in the cavern outlet in governing equations for temperature

E j :

Young’s modulus of layer j

\( \tilde{f}(s) \) :

The Laplace transform of f(t*)

h c :

Average heat transfer coefficient

i :

Subscript that denotes gas state in the cavern inlet in governing equations for temperature

\( I_{0} (\bullet) \) :

Modified Bessel function of the first kind of order zero

\( I_{1} (\bullet) \) :

Modified Bessel function of the first kind of order one

k j :

Thermal conductivity of layer j

\( K_{1} (\bullet) \) :

Modified Bessel function of the second kind of order one

\( K_{0} (\bullet) \) :

Modified Bessel function of the second kind of order zero

\( \dot{m}_{c} \) :

Total compressor flow rate

p :

Air pressure

p*:

Dimensionless air pressure

p 0 :

Initial air pressure

p c :

Air pressure in the critical state

P j :

Contact pressure at the boundary of layers j and j + 1

r j−1 :

Inner radius of layer j

r j :

Outer radius of layer j

R :

Gas constant for air

t :

Time

t*:

Dimensionless time

t i :

I = 1, 2, 3, process duration times; see Fig. 3

t p :

Time period of the cycle

T :

Air temperature

T*:

Dimensionless air temperature

T 0 :

Initial air temperature

T c :

Air temperature in the critical state

T i :

Air injection temperature

T j :

Temperature of layer j

T R0 :

Constant temperature along the outer boundary of the host rock

V :

Cavern volume

V i :

Weight coefficient defined in Eq. (35)

Z :

Air compressibility factor

Z 0 :

Initial value of Z

Z T0 :

Initial value of ∂Z/∂T

α j :

Coefficient of thermal expansion of layer j

μ j :

Poisson’s ratio of layer j

ρ :

Air density

ρ * :

Dimensionless air density

ρ 0 :

Initial air density

\( \rho_{av}^{*} \) :

Average dimensionless air density in each cycle

ρ j :

Density of layer j

\( \sigma_{{_{\theta j} }}^{\prime } \) :

Autogenous radial stress by temperature of layer j

\( \sigma_{\theta j}^{\prime \prime } \) :

Hoop stress by contact pressures of layer j

\( \sigma_{rj}^{\prime } \) :

Autogenous hoop stress by temperature of layer j

\( \sigma_{rj}^{\prime \prime } \) :

Radial stress by contact pressures of layer j

\( \sigma_{zj}^{\prime } \) :

Autogenous longitudinal stress by temperature of layer j

\( \sigma_{zj}^{\prime \prime } \) :

Longitudinal stress by contact pressures of layer j

\( u_{rj}^{\prime } \) :

Autogenous radial displacement by temperature of layer j

\( u_{rj}^{\prime \prime } \) :

Radial displacement by contact pressures of layer j

References

  • Allen RD, Doherty TJ, Fossum AF (1982) Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns. Pacific Northwest Laboratory, Springfield

    Book  Google Scholar 

  • Chen JW, Jiang WD, Yang CH, Yin XY, Fu SW, Yu KJ (2007) Study on engineering thermal analysis of gas storage in salt formation during gas injection and production. Chin J Rock Mech Eng 26(Supp 1):2887–2894 (in Chinese)

    Google Scholar 

  • Crotogino F, Mohmeyer K-U, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. Paper presented at the Spring 2001 meeting, Orlando, Florida, April 2001

  • De Almeida Barbuto FA (1991) Performance of numerical inversion of laplace transforms. Adv Eng Softw Workst 13(3):148–155

    Article  Google Scholar 

  • Hayashi M (1991) Rock mechanics of compressed air energy storage and super magnetic energy storage in Japan. In: Rock mechanics in Japan. Japanese Committee for ISRM, Tokyo, pp 50–57

  • Ishihata T (1997) Underground compressed air storage facility for CAES-G/T power plant utilizing an airtight lining. Int Soc Rock Mech 5(1):17–21

    Google Scholar 

  • Johansson J (2003) High pressure storage of gas in lined rock caverns-cavern wall design principles. Licentiate Thesis, Royal Institute of Technology, Stockholm

  • Kim HM, Rutqvist J, Choi BH (2012a) Feasibility analysis of underground compressed air energy storage in lined rock caverns using the TOUGH-FLAC simulator. In: TOUGH Symposium 2012, Berkeley, California, September 17–19, 2012

  • Kim H-M, Rutqvist J, Jeong J-H, Choi B-H, Ryu D-W, Song W-K (2012b) Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage. Rock Mech Rock Eng 46(5):1113–1124. doi:10.1007/s00603-012-0312-4

    Article  Google Scholar 

  • Kim H-M, Rutqvist J, Ryu D-W, Choi B-H, Sunwoo C, Song W-K (2012c) Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance. Appl Energy 92:653–667

    Article  Google Scholar 

  • Kushnir R, Dayan A, Ullmann A (2012a) Temperature and pressure variations within compressed air energy storage caverns. Int J Heat Mass Transf 55(21–22):5616–5630. doi:10.1016/j.ijheatmasstransfer.2012.05.055

    Article  Google Scholar 

  • Kushnir R, Ullmann A, Dayan A (2012b) Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review. Rev Chem Eng 28:123–148. doi:10.1515/revce-2012-0006

    Article  Google Scholar 

  • Kushnir R, Ullmann A, Dayan A (2012c) Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants. J Energy Resour Technol 134(2):021901. doi:10.1115/1.4005659

    Article  Google Scholar 

  • Li ZK, Ma FP, Liu H (2003) Underground engineering problems in compressed air energy storage and its developing future. Chin J Rock Mech Eng 22(Supp. 1):2121–2126 (in Chinese)

    Google Scholar 

  • Lindblom UE (1997) Design criteria for the Brooklyn Union gas storage caverns at JFK Airport, New York. Int J Rock Mech Min Sci 34:179.e1–179.e16

    Google Scholar 

  • Liu LQ (2002) An algorithm for numerical inversion of Laplace transforms. J Inn Mong Poly Univ 21(1):43–47 (in Chinese)

    Google Scholar 

  • Raju M, Khaitan SK (2012) Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant. Appl Energy 89:474–481. doi:10.1016/j.apenergy.2011.08.019

    Article  Google Scholar 

  • Rutqvist J, Kim H-M, Ryu D-W, Synn J-H, Song W-K (2012) Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns. Int J Rock Mech Min Sci 52:71–81. doi:10.1016/j.ijrmms.2012.02.010

    Article  Google Scholar 

  • Song WK, Ryu DW, Lee YK (2011) Stability analysis of concrete plugs in a pilot cavern for compressed air energy storage. In: Qian Q, Zhou Y (eds) Harmonising rock engineering and the environment. CRC Press, London

    Google Scholar 

  • Succar S, Williams RH (2008) Compressed air energy storage: theory, resources, and applications for wind power. Princeton Environmental Institute, Princeton University, Princeton

    Google Scholar 

  • Wang ZK (2005) Principles of chemical engineering, 3rd edn. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Zhang J-R, Zhao T-Y (1987) A handbook for the thermo-physical properties of engineering materials. New Era Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The financial support provided by the National Natural Science Foundation of China (No. 51278378) and the National High-Tech Research and Development Program of China (863 Program, No. SS2012AA052501) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Chu Xia.

Appendix: Detailed Derivations for the Temperature Field in a Lined Cavern for Underground CAES

Appendix: Detailed Derivations for the Temperature Field in a Lined Cavern for Underground CAES

1.1 Charging Stage in the First Cycle

For the charging stage in the first cycle, M * = T * − 1 and M * j  = T * j  − 1 (j = 1, 2, 3) are defined. Thus, following the premise that \( \rho_{av}^{*} \) is used instead of ρ*, Eqs. (11) to (17), that is, the governing equations for the temperature solution, are converted to the following expressions:

$$ \begin{gathered} \frac{{t_{1}^{*} \rho_{av}^{*} }}{{m_{r} }}\frac{{dM^{*} }}{{dt^{*} }} = \gamma T_{i}^{*} + (R^{*} - \gamma )(M^{*} + 1) \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \rho_{av}^{*} U_{{\rho^{*} }}^{*} + q_{r} \left( {M_{1}^{*} (r_{0} ,t) - M^{*} } \right) \hfill \\ \end{gathered} , $$
(55)
$$ \frac{{\partial M_{j}^{*} }}{{\partial t^{*} }} = \frac{{F_{j} }}{{r^{*} }}\frac{\partial }{{\partial r^{*} }}\left( {r^{*} \frac{{\partial M_{j}^{*} }}{{\partial r^{*} }}} \right) \quad ( {j = \, 1, \, 2, \, 3}), $$
(56)
$$ \frac{{\partial M_{1}^{*} }}{{\partial r^{*} }} = B_{i1} (M_{1}^{*} - M^{*} ),\;r^{*} = 1, $$
(57)
$$ M_{j}^{*} = M_{j + 1}^{*} ,\frac{{\partial M_{j}^{*} }}{{\partial r^{*} }} = \lambda_{j + 1} \frac{{\partial M_{j + 1}^{*} }}{{\partial r^{*} }},r^{*} = r_{j}^{*}\;\left( {j = \, 1, \, 2} \right), $$
(58)
$$ M_{3}^{*} = 0,\;r^{*} = r_{3}^{*} , $$
(59)
$$ M^{*} = M_{j}^{*} = 0,\;t^{*} = 0\quad( {j = \, 1, \, 2, \, 3}). $$
(60)

Laplace transform is applied to Eq. (56) [note that \( \tilde{f}(s) \) denotes the Laplace transform of the function f(t *)] and we obtain the following equation:

$$ s\tilde{M}_{j}^{*} = \frac{{F_{j} }}{{r^{*} }}\frac{\partial }{{\partial r^{*} }}\left( {r^{*} \frac{{\partial \tilde{M}_{j}^{*} }}{{\partial r^{*} }}} \right)\quad( {j = \, 1, \, 2, \, 3}). $$
(61)

The solution for Eq. (61) is:

$$ \tilde{M}_{j}^{*} = A_{j} I_{0} \left( {\sqrt {s/F_{j} } r^{*} } \right) + B_{j} K_{0} \left( {\sqrt {s/F_{j} } r^{*} } \right)\quad( {j = \, 1, \, 2, \, 3}), $$
(62)

where \( I_{0} \left( \bullet \right) \) stands for the modified Bessel function of the first kind of order zero and \( K_{0} \left( \bullet \right) \) represents the modified Bessel function of the second kind of order zero. A j and B j are coefficients to be determined by the boundary and continuity conditions, respectively.

Then, referring to Eq. (62), the first derivative of \( \tilde{M}_{j}^{*} \) with respect to r * is expressed as follows:

$$ \frac{{\partial \tilde{M}_{j}^{*} }}{{\partial r^{*} }} = A_{j} \sqrt {s/F_{j} } I_{1} \left( {\sqrt {s/F_{j} } r^{*} } \right) - B_{j} \sqrt {s/F_{j} } K_{1} \left( {\sqrt {s/F_{j} } r^{*} } \right), $$
(63)

where \( I_{1} \left( \bullet \right) \) is the modified Bessel function of the first kind of order one and \( K_{1} \left( \bullet \right) \) denotes the modified Bessel function of the second kind of order one.

In reference to the Laplace transform of Eq. (55), we obtain the following equation:

$$ \alpha_{1} \tilde{M}^{*} = \alpha_{2} /s + q_{r} \tilde{M}_{1}^{*} (1,s), $$
(64)

where:

$$ \alpha_{1} = \frac{{t_{1}^{*} \rho_{av}^{*} s}}{{m_{r} }} - (R^{*} - \gamma ) + q_{r} ,\;\alpha_{2} = \gamma T_{i}^{*} + (R^{*} - \gamma ) + \rho^{*} U_{{\rho^{*} }}^{*} . $$

Thus, based on Eq. (64) and applying the Laplace transform of the boundary condition Eq. (57), the following equation is obtained:

$$ \begin{gathered} A_{1} \sqrt {s/F_{j} } I_{1} \left(\sqrt {s/F_{j} } \right) - B_{1} \sqrt {s/F_{j} } K_{1} \left(\sqrt {s/F_{j} } \right) \hfill \\ = \frac{{B_{i1} (\alpha_{1} - q_{r} )}}{{\alpha_{1} }}\left[ {A_{1} I_{0} \left(\sqrt {s/F_{j} } \right) + B_{1} K_{0} \left(\sqrt {s/F_{j} } \right)} \right] - \frac{{B_{i1} \alpha_{2} }}{{s\alpha_{1} }} \hfill \\ \end{gathered} . $$
(65)

The Laplace transform of the second boundary condition Eq. (59) leads to the following expression:

$$ A_{3} I_{0} \left( {\sqrt {s/F_{3} } r_{3}^{*} } \right) + B_{3} K_{0} \left( {\sqrt {s/F_{3} } r_{3}^{*} } \right) = 0. $$
(66)

The resulting Laplace transforms of the continuity conditions (58) are expressed as follows:

$$ \begin{gathered} A_{j} I_{0} \left( {\sqrt {s/F_{j} } r_{j}^{*} } \right) + B_{j} K_{0} \left( {\sqrt {s/F_{j} } r_{j}^{*} } \right) \hfill \\ = A_{j + 1} I_{0} \left( {\sqrt {s/F_{j + 1} } r_{j + 1}^{*} } \right) + B_{j + 1} K_{0} \left( {\sqrt {s/F_{j + 1} } r_{j + 1}^{*} } \right) \hfill \\ \end{gathered} , $$
(67)
$$ \begin{gathered} A_{j} \sqrt {s/F_{j} } I_{1} \left( {\sqrt {s/F_{j} } r_{j}^{*} } \right) - B_{j} \sqrt {s/F_{j} } K_{1} \left( {\sqrt {s/F_{j} } r_{j}^{*} } \right) \hfill \\ = \lambda_{j + 1} \left[ {A_{j + 1} \sqrt {s/F_{j + 1} } I_{1} \left( {\sqrt {s/F_{j + 1} } r_{j + 1}^{*} } \right) - B_{j + 1} \sqrt {s/F_{j + 1} } K_{1} \left( {\sqrt {s/F_{j + 1} } r_{j + 1}^{*} } \right)} \right] \;\left( {j = \, 1, \, 2} \right) \hfill \\ \end{gathered} . $$
(68)

Let \( \alpha_{0} = - \frac{{B_{i1} \alpha_{2} }}{{s\alpha_{1} }}\sqrt {F_{1} /s} ,\;h_{0} = \frac{{B_{i1} (\alpha_{1} - q_{r} )}}{{\alpha_{1} }}\sqrt {F_{1} /s} ,\;h_{1} = \lambda_{2} \sqrt {F_{1} /F_{2} } ,\;h_{2} = \lambda_{3} \sqrt {F_{2} /F_{3} } ,\;\eta_{j} = \sqrt {s/F_{j} } r_{j - 1}^{*} \) and \( \varepsilon_{j} = \sqrt {s/F_{j} } r_{j}^{*} ,\left( {j = \, 1, \, 2, \, 3} \right), \) then Eqs. (65) to (68) can be expressed as the following matrix form:

$$ \left\{ {\left[ {\begin{array}{*{20}c} {I_{1} (\eta_{1} ) - h_{0} I_{0} (\eta_{1} )} & { - K_{1} (\eta_{1} ) - h_{0} K_{0} (\eta_{1} )} & 0 & 0 & 0 & 0 \\ {I_{0} (\varepsilon_{1} )} & {K_{0} (\varepsilon_{1} )} & { - I_{0} (\eta_{2} )} & { - K_{0} (\eta_{2} )} & 0 & 0 \\ {I_{1} (\varepsilon_{1} )} & { - K_{1} (\varepsilon_{1} )} & { - h_{1} I_{1} (\eta_{2} )} & {h_{1} K_{1} (\eta_{2} )} & 0 & 0 \\ 0 & 0 & {I_{0} (\varepsilon_{2} )} & {K_{0} (\varepsilon_{2} )} & { - I_{0} (\eta_{3} )} & { - K_{0} (\eta_{3} )} \\ 0 & 0 & {I_{1} (\varepsilon_{2} )} & { - K_{1} (\varepsilon_{2} )} & { - h_{2} I_{1} (\eta_{3} )} & {h_{2} K_{1} (\eta_{3} )} \\ 0 & 0 & 0 & 0 & {I_{0} (\varepsilon_{3} )} & {K_{0} (\varepsilon_{3} )} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {A_{2} } \\ {B_{2} } \\ {A_{3} } \\ {B_{3} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\alpha_{0} } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right\}} \right\} . $$
(69)

Coefficients A 1 to B 3 seem to be capable of being directly determined from Eq. (69). However, in fact, the difference between the coefficients in the first matrix of Eq. (69) are large in magnitude, as a result of the different properties of the modified Bessel functions of the first second kinds. The singularity in the coefficient matrix would bring a great error in the solution for A 1 to B 3 if solving for Eq. (69) directly.

To overcome the drawback mentioned previously, some new functions (I 0K 0I 1 and K 1) are defined as follows:

$$ \left\{ {\begin{array}{*{20}c} {{\mathbf{I}}_{0} (x) = I_{0} (x)/\exp (x)} \\ {{\mathbf{K}}_{0} (x) = K_{0} (x) \bullet \exp (x)} \\ {{\mathbf{I}}_{1} (x) = I_{1} (x)/\exp (x)} \\ {{\mathbf{K}}_{1} (x) = K_{1} (x) \bullet \exp (x)} \\ \end{array} } \right., $$
(70)

where x is an argument.

Thus, Eq. (69) is changed to the following form:

$$ \left[ {\begin{array}{*{20}c} {{\mathbf{a}}_{1} } \\ {{\mathbf{b}}_{1} } \\ {{\mathbf{a}}_{2} } \\ {{\mathbf{b}}_{2} } \\ {{\mathbf{a}}_{3} } \\ {{\mathbf{b}}_{3} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {A_{1} \exp (\eta_{1} )} \\ {B_{2} /\exp (\eta_{1} )} \\ {A_{2} \exp (\eta_{2} )} \\ {B_{2} /\exp (\eta_{2} )} \\ {A_{3} \exp (\eta_{3} )} \\ {B_{3} /\exp (\eta_{3} )} \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\alpha_{0} } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right\}, $$
(71)

where:

$$ \begin{gathered} {\mathbf{a}}_{1} = \left\{ {{\mathbf{I}}_{1} (\eta_{1} ){ - }h_{0} {\mathbf{I}}_{0} (\eta_{1} ),{ - }{\mathbf{K}}_{1} (\eta_{1} ){ - }h_{0} {\mathbf{K}}_{0} (\eta_{1} ),0,0,0,0} \right\}, \hfill \\ {\mathbf{b}}_{1} = \left\{ {{\mathbf{I}}_{0} (\varepsilon_{1} )\exp (\varepsilon_{1} { - }\eta_{1} ),{\mathbf{K}}_{0} (\varepsilon_{1} )\exp (\eta_{1} { - }\varepsilon_{1} ),{ - }{\mathbf{I}}_{0} (\eta_{2} ),{ - }{\mathbf{K}}_{0} (\eta_{2} ),0,0} \right\}, \hfill \\ {\mathbf{a}}_{2} = \left\{ {{\mathbf{I}}_{1} (\varepsilon_{1} )\exp (\varepsilon_{1} { - }\eta_{1} ),{ - }{\mathbf{K}}_{1} (\varepsilon_{1} )\exp (\eta_{1} { - }\varepsilon_{1} ),{ - }h_{1} {\mathbf{I}}_{1} (\eta_{2} ),h_{1} {\mathbf{K}}_{1} (\eta_{2} ),0,0} \right\}, \hfill \\ {\mathbf{b}}_{2} = \left\{ {0,0,{\mathbf{I}}_{0} (\varepsilon_{2} )\exp (\varepsilon_{2} { - }\eta_{2} ),{\mathbf{K}}_{0} (\varepsilon_{2} )\exp (\eta_{2} { - }\varepsilon_{2} ),{ - }{\mathbf{I}}_{0} (\eta_{3} ),{ - }{\mathbf{K}}_{0} (\eta_{3} )} \right\}, \hfill \\ {\mathbf{a}}_{3} = \left\{ {0,0,{\mathbf{I}}_{1} (\varepsilon_{2} )\exp (\varepsilon_{2}{ - }\eta_{2} ),{ - }{\mathbf{K}}_{1} (\varepsilon_{2} )\exp (\eta_{2} { - }\varepsilon_{2} ),{ - }h_{2} {\mathbf{I}}_{1} (\eta_{3} ),h_{2} {\mathbf{K}}_{1} (\eta_{3} )} \right\}, \hfill \\ {\mathbf{b}}_{3} = \left\{ {0,0,0,0,{\mathbf{I}}_{0} (\varepsilon_{3} )\exp (\varepsilon_{3} - \eta_{3} ),{\mathbf{K}}_{0} (\varepsilon_{3} )\exp (\eta_{3} { - }\varepsilon_{3} )} \right\}. \hfill \\ \end{gathered} $$
(72)

We define the matrix \( {\mathbf{S}} = [\begin{array}{*{20}c} {{\mathbf{a}}_{1} } & {{\mathbf{b}}_{1} } & {{\mathbf{a}}_{2} } & {{\mathbf{b}}_{2} } & {{\mathbf{a}}_{3} } & {{\mathbf{b}}_{3} } \\ \end{array} ]^{T} , \) which has a determinant ΔS = |S|, and assume that:

$$ \begin{gathered} \Delta S_{j1} = \left| {\begin{array}{*{20}c} S & {{\text{row}}\;1\;{\text{is}}\;{\text{deleted}}} \\ {{\text{column}}\;2j - 1\;{\text{is}}\;{\text{deleted}}} & \cdots \\ \end{array} } \right| \\ \Delta S_{j2} = \left| {\begin{array}{*{20}c} S & {{\text{row}}\;1\;{\text{is}}\;{\text{deleted}}} \\ {{\text{column}}\;2j\;{\text{is}}\;{\text{deleted}}} & \cdots \\ \end{array} } \right|\quad( {j = \, 1, \, 2, \, 3}) \\ \end{gathered} . $$
(73)

Therefore, based on Eqs. (62), (69), (71) and (73), we obtain the following equation:

$$ \begin{gathered} \tilde{M}_{j}^{*} = \alpha_{0} \frac{{\Delta S_{j1} }}{\Delta S}{\mathbf{I}}_{0} \left( {\sqrt {s/F_{j} } r^{*} } \right)\exp \left( {\sqrt {s/F_{j} } r^{*} - \eta_{j} } \right) \hfill \\ \;\;\;\;\;\;\; - \alpha_{0} \frac{{\Delta S_{j2} }}{\Delta S}{\mathbf{K}}_{0} \left( {\sqrt {s/F_{j} } r^{*} } \right)\exp \left( {\eta_{j} - \sqrt {s/F_{j} } r^{*} } \right). \hfill \\ \end{gathered} $$
(74)

From Eqs. (65) and (74), the following equation can be derived:

$$ \begin{gathered} \tilde{M}^{*} = \frac{{\alpha_{2} }}{{s\alpha_{1} }} + \frac{{q_{r} \alpha_{0} }}{{\alpha_{1} \Delta S}}\left[ {\Delta S_{11} {\mathbf{I}}_{0} \left( {\sqrt {\frac{s}{{F_{1} }}} r^{*} } \right)\exp \left( {\sqrt {\frac{s}{{F_{1} }}} r^{*} - \eta_{1} } \right)} \right. \hfill \\ \left. {\;\;\;\;\;\;\;\; - \Delta S_{12} {\mathbf{K}}_{0} \left( {\sqrt {\frac{s}{{F_{1} }}} r^{*} } \right)\exp \left( {\eta_{1} - \sqrt {\frac{s}{{F_{1} }}} r^{*} } \right)} \right]. \hfill \\ \end{gathered} $$
(75)

Finally, the inverse Laplace transform is performed to obtain the results shown in Eqs. (33) and (34), in which:

$$ M^{*} = \frac{\ln 2}{{t^{*} }}\sum\limits_{i = 1}^{{n_{\text{cal}} }} {V_{i} \tilde{M}^{*} \left(\frac{\ln 2}{{t^{*} }}i\right)} , $$
(76)
$$ M_{j}^{*} = \frac{\ln 2}{{t^{*} }}\sum\limits_{i = 1}^{{n_{\text{cal}} }} {V_{i} \tilde{M}_{j}^{*} \left(r^{*} ,\frac{\ln 2}{{t^{*} }}i\right)}\; (j = 1,2,3). $$
(77)

1.2 Other Stages

Taking the first storage stage of cycle n (n ≥ 1) for example, the new functions T * a2 (t *) n and T *12 (r*, t*) n meet the following condition:

$$ \begin{aligned} \frac{{t_{1}^{*} \rho_{av}^{*} }}{{m_{r} }}\frac{{dT_{a2}^{*} (t^{*} )_{n} }}{{dt^{*} }} =& - \gamma T_{i}^{*} - (R^{*} - \gamma )T_{c}^{*} (t^{*} + t_{1}^{*} )_{n} \hfill \\ & - \rho_{av}^{*} U_{{\rho^{*} }}^{*} + q_{r} \left( {T_{12}^{*} (1,t^{*} )_{n} - T_{a2}^{*} (t^{*} )_{n} } \right). \hfill \\ \end{aligned} $$
(78)

After some simple derivations, it is found that T * a2 (t *) n and T * j2 (r *t *) n (j = 1, 2, 3) meet the solution-determining conditions represented by Eqs. (56) to (60). Here, for convenience, the following approximation is adopted:

$$ T_{av}^{*} = {{\int\limits_{0}^{{t^{*} }} {T_{c}^{*} (t^{*} + t_{1}^{*} )_{n} dt} } \mathord{\left/ {\vphantom {{\int_{0}^{{t^{*} }} {T_{c}^{*} (t^{*} + t_{1}^{*} )_{n} dt} } {t^{*} }}} \right. \kern-0pt} {t^{*} }}. $$
(79)

Hence, from Eq. (78), the new temperature functions are expressed as follows:

$$ \tilde{T}_{a2}^{*} (s)_{n} = \frac{{ - \left[ {\gamma T_{i}^{*} + \rho_{av}^{*} U_{{\rho^{*} }}^{*} + (R^{*} - \gamma )T_{av}^{*} } \right]}}{{\frac{{t_{1}^{*} \rho_{av}^{*} s}}{{m_{r} }} + q_{r} }} + \frac{{q_{r} }}{{\frac{{t_{1}^{*} \rho_{av}^{*} s}}{{m_{r} }} + q_{r} }}\tilde{T}_{12}^{*} (1,s)_{n} . $$
(80)

From what has been mentioned previously, a similar solution for \( \tilde{T}_{a2}^{*} (s)_{n} \) and \( \tilde{T}_{j2}^{*} (r^{*} ,s)_{n} \) to \( \tilde{M}^{*} \) and \( \tilde{M}_{j}^{*} \left( {j = \, 1, \, 2, \, 3} \right) \) can be acquired only if α 1 is represented by t *1 ρ * av s/m r  + q r and α 2 is changed to \( - \left[ {\gamma T_{i}^{*} + \rho_{av}^{*} U_{{\rho^{*} }}^{*} + (R^{*} - \gamma )T_{av}^{*} } \right] . \) A similar process to that discussed in the previous section of this appendix is performed, and then the air temperature associated with the temperatures in the layers around the lined cavern can also be determined.

Likewise, for the purpose of determining \( \tilde{T}_{a3}^{*} (s)_{n} \) and \( \tilde{T}_{j3}^{*} (r^{*} ,s)_{n} \left( {j = \, 1, \, 2, \, 3} \right), \) α 1 should be changed to t *1 ρ * av s/m r  + CD R * + q r . Meanwhile α 2 is represented by \( - {\mathbf{CD}}(\rho_{av}^{*} U_{{\rho^{*} }}^{*} + R^{*} T_{av}^{*} ) . \) Of course, T * av also requires corresponding substitution, namely:

$$ T_{av}^{*} = {{\int\limits_{0}^{{t^{*} }} {T_{s1}^{*} (t^{*} + t_{2}^{*} - t_{1}^{*} )_{n} dt} } \mathord{\left/ {\vphantom {{\int_{0}^{{t^{*} }} {T_{s1}^{*} (t^{*} + t_{2}^{*} - t_{1}^{*} )_{n} dt} } {t^{*} }}} \right. \kern-0pt} {t^{*} }}. $$
(81)

Again, aimed at obtaining \( \tilde{T}_{a4}^{*} (s)_{n} \) and \( \tilde{T}_{j4}^{*} (r^{*} ,s)_{n} \left( {j = \, 1, \, 2, \, 3} \right), \) α 1 is represented by t *1 ρ * av s/m r  + q r a, T * av a is changed to \( {{\int_{0}^{{t^{*} }} {T_{d}^{*} (t^{*} + t_{3}^{*} - t_{2}^{*} )dt} } \mathord{\left/ {\vphantom {{\int_{0}^{{t^{*} }} {T_{d}^{*} (t^{*} + t_{3}^{*} - t_{2}^{*} )dt} } {t^{*} }}} \right. \kern-0pt} {t^{*} }} \) and α 2 is changed to \( {\mathbf{CD}}(\rho_{av}^{*} U_{{\rho^{*} }}^{*} + R^{*} T_{av}^{*} ) . \)

Finally, to acquire \( \tilde{T}_{a1}^{*} (s)_{n} \) and \( \tilde{T}_{j1}^{*} (r^{*} ,s)_{n} \) (j = 1, 2, 3 and the first cycle is excluded), α 1 should be changed to t *1 ρ * av s/m r  + q r  − (R * − γ) and T * av is represented by \( {{\int_{0}^{{t^{*} }} {T_{s2}^{*} (t^{*} + 1 - t_{3}^{*} )_{n - 1} dt} } \mathord{\left/ {\vphantom {{\int_{0}^{{t^{*} }} {T_{s2}^{*} (t^{*} + 1 - t_{3}^{*} )_{n - 1} dt} } {t^{*} }}} \right. \kern-0pt} {t^{*} }} . \) Meanwhile α 2 is changed to \( \gamma T_{i}^{*} + \rho_{av}^{*} U_{{\rho^{*} }}^{*} + (R^{*} - \gamma )T_{av}^{*} . \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, SW., Xia, CC., Du, SG. et al. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage. Rock Mech Rock Eng 48, 749–770 (2015). https://doi.org/10.1007/s00603-014-0570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0570-4

Keywords

Navigation