Skip to main content
Log in

Linear and Nonlinear Optical Properties in Spherical Quantum Dots: Generalized Hulthén Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, we studied the optical properties of spherical quantum dots confined in Hulthén potential with the appropriate centrifugal term included. The approximate solution of the bound state and wave functions were obtained from the Schrödinger wave equation by applying the factorization method. Also, we have used the density matrix formalism to investigate the linear and third-order nonlinear absorption coefficient and refractive index changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Łach, P., Karczewski, G., Wojnar, P., Wojtowicz, T., Brik, M.G., Kaminska, A., Reszka, A., Kowalski, B.J., Suchocki, A.: Pressure coefficients of the photoluminescence of the II–VI semiconducting quantum dots grown by molecular beam epitaxy. J. Lumin. 132, 1501 (2012)

    Article  Google Scholar 

  2. Feigelson, R.S.: Handbook of Crystal Growth (Second Edition) Fundamentals. Elsevier, Amsterdam (2015)

    Google Scholar 

  3. Ferreira, R., Verzelen, O., Bastard, G.: Optical properties of excitonic polarons in semiconductor quantum dots. Phys. E 21, 164 (2004)

    Article  Google Scholar 

  4. Ghazi, H.E., Jorio, A., Zorkani, I.: Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure. Opt. Commun. 331, 73 (2014)

    Article  ADS  Google Scholar 

  5. Karmakar, S.: Novel Three-State Quantum Dot Gate Field Effect Transistor. Springer, Berlin (2014)

    Book  Google Scholar 

  6. Keshavarz, A., Zamani, N.: Optimization of optical absorption coefficient in asymmetric double rectangular quantum wells by PSO algorithm. Opt. Commun. 294, 401 (2013)

    Article  ADS  Google Scholar 

  7. Miska, P., Even, J., Paranthoen, C., Dehaese, O., Folliot, H., Loualiche, S., Senes, M., Marie, X.: Optical properties and carrier dynamics of InAs/InP(1 1 3)B quantum dots emitting between 1.3 and 1:55 m for laser applications. Phys. E 17, 56 (2003)

    Article  Google Scholar 

  8. Nasr, O., Alouane, M.H.H., Maaref, H., Hassen, F., Sfaxi, L., Ilahi, B.: Comprehensive investigation of optical and electronic properties of tunable InAs QDs optically active at O-band telecommunication window with (In)GaAs surrounding material. J. Lumin. 148, 243 (2014)

    Article  Google Scholar 

  9. Rezaei, G., Vahdani, M.R.K., Vaseghi, B.: Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot. Curr. Appl. Phys. 11, 176 (2010)

    Article  ADS  Google Scholar 

  10. Rezaei, G., Mousazadeh, Z., Vaseghi, B.: Nonlinear optical properties of a two-dimensional elliptic quantum dot. Phys. E 42, 1477 (2010)

    Article  Google Scholar 

  11. Zhao, Y., Yan, Q., Feezell, D., Fujito, K., Van de Walle, C.G., Speck, J.S., DenBaars, S.P., Nakamura, S.: Optical polarization characteristics of semipolar (303\(^-\)1) and (303\(^-\) 1\(^-\)) InGaN/GaN light-emitting diodes. Opt. Express 21, A53 (2012)

    Article  Google Scholar 

  12. Belver, C., Bedia, J., Rodriguez, J.J.: Titania–clay heterostructures with solar photocatalytic applications. Appl. Catal. B Environ. 176–177, 278 (2015)

    Article  Google Scholar 

  13. Bezyazychnaya, T.V., Bogdanovich, M.V., Kabanov, V.V., Kabanau, D.M., Lebiadok, Y.V., Parashchuk, V.V., Ryabtsev, A.G., Ryabtsev, G.I., Shpak, P.V., Shchemelev, M.A., Andreev, I.A., Kunitsyna, E.V., Sherstnev, V.V., Yakovlev, Y.P.: Light emitting diode–photodiode optoelectronic pairs based on the nAs/InAsSb/InAsSbP heterostructure for the detection of carbon dioxide. Semiconductors 49, 980 (2015)

    Article  ADS  Google Scholar 

  14. Hyun, J.K., Zhang, S.: Growth of nanowire heterostructures and their optoelectronic and spintronic applications. Woodhead Publishing Series in Electronic and Optical Materials (2015)

  15. Yin, S., Nie, W., Mohite, A.D., Saxena, A., Smith, D.L., Ruden, P.P.: Current–voltage characteristics of organic heterostructure devices with insulating spacer layers. Org. Electron. 24, 26 (2015). doi:10.1016/j.orgel.2015.05.018

    Article  Google Scholar 

  16. Vasko, F.T., Kuznetsov, A.V.: Electronic States and Optical Transitions in Semiconductor Heterostructures. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Franciosi, A., Van de Walle, C.G.: Heterojunction band offset engineering. Surf. Sci. Rep. 25, 1 (1996)

    Article  ADS  Google Scholar 

  18. Kasapoglu, E., Sari, H., SÖkmen, I.: The effect of hydrostatic pressure on optical transitions in quantum-well wires. Phys. B 353, 345 (2004)

    Article  ADS  Google Scholar 

  19. Kazaryan, E.M., Petrosyan, L.S., Sarkisyan, H.A.: Hidden symmetry and excitonic transitions in the quantum well. Phys. E 40, 536 (2008)

    Article  MATH  Google Scholar 

  20. Sahin, M.: Third-order nonlinear optical properties of a one-and two-electron spherical quantum dot with and without a hydrogenic impurity. J. Appl. Phys. 106, 063710 (2009)

    Article  ADS  Google Scholar 

  21. Juharyan, L.A., Kazaryanb, E.M., Petrosyana, L.S.: Electronic states and interband light absorption in semi-spherical quantum dot under the influence of strong magnetic field. Solid State Commun. 139, 537 (2006)

    Article  ADS  Google Scholar 

  22. Parang, Z., Keshavarz, A., Zamani, N.: Optimization of optical absorption coefficient in double modified Pöschl–Teller quantum wells. J. Comput. Electron. 13, 1020 (2004)

    Article  Google Scholar 

  23. Khordad, R., Mirhosseini, B.: Linear and nonlinear optical properties in spherical quantum dots: Rosen–Morse potential. Opt. Spectrosc. 117, 434 (2014)

    Article  ADS  Google Scholar 

  24. Khordad, R., Mirhosseini, B.: Application of Tietz potential to study optical properties of spherical quantum dots. Pramana J. Phys. xx, 1 (2015)

    Google Scholar 

  25. Qiang, W.-C., Zhou, R.-S., Gao, Y.: Any l-state solutions of the Klein–Gordon equation with the generalized Hulthén potential. Phys. Lett. A 371, 201 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Benamira, F., Guechi, L., Zouache, A.: Comment on: Any l-state solutions of the Klein–Gordon equation with the generalized Hulthén potential. Phys. Lett. A 372, 7199 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Simsek, M., Egrifes, H.: The Klein–Gordon equation of generalized Hulthén potential in complex quantum mechanics. J. Phys. A: Math. Gen. 37, 4379 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Jia, C.S., Liu, J.Y., Wang, P.Q.: A new approximation scheme for the centrifugal term and the Hulthén potential. Phys. Lett. A. 372, 4779 (2008)

    Article  ADS  MATH  Google Scholar 

  29. Hassanabadi, H., Maghsoodi, E., Salehi, N., Ikot, A.N., Zarrinkamar, S.: Scattering states of the dirac equation under asymmetric Hulthén potential. Eur. Phys. J. Plus 128, 127 (2013)

    Article  Google Scholar 

  30. Ikot, A.N., Obong, H.P., Owate, I.O., Onyeaju, M.C., Hassanabadi, H.: Scattering state of Klein-Gordon particles by q-parameter hyperbolic Poschl-Teller potential. Adv. High Energy Phy. 2015, 632603 (2015)

    Google Scholar 

  31. Vahdani, M.R.K.: The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system. Superlattices Microstruct. 76, 326 (2014)

    Article  ADS  Google Scholar 

  32. Zhang, Z.-H., Guo, K.-X., Chen, B., Wang, R.-Z., Kang, M.-W., Shao, S.: Theoretical studies on the optical absorption coefficients and refractive index changes in parabolic quantum dots in the presence of electric and magnetic fields. Superlattices Microstruct. 47, 325 (2010)

    Article  ADS  Google Scholar 

  33. Ahn, D., Chuang, S.-L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. QE–23, 2196 (1987)

    ADS  Google Scholar 

  34. Safarpour, Gh, Izadi, M.A., Novzari, M., Niknam, E., Moradi, M.: Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire. Phys. E 59, 124–132 (2014)

    Article  Google Scholar 

  35. Khordad, R.: Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin. 134, 201–207 (2013)

    Article  Google Scholar 

  36. Lu, L., Xie, W., Hassanabadi, H.: The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential. J. Lumin. 131, 2538 (2001)

    Article  Google Scholar 

  37. Aytekin, O., Turgut, S., Ünal, V.Ü., Akşahin, E., Tomak, M.: Nonlinear optical properties of a Woods–Saxon quantum dot under an electric field. Phys. E 54, 257 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Onyeaju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onyeaju, M.C., Idiodi, J.O.A., Ikot, A.N. et al. Linear and Nonlinear Optical Properties in Spherical Quantum Dots: Generalized Hulthén Potential. Few-Body Syst 57, 793–805 (2016). https://doi.org/10.1007/s00601-016-1110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1110-4

Keywords

Navigation