Skip to main content
Log in

Formula Method for Bound State Problems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We present a simple formula for finding bound state solution of any quantum wave equation which can be simplified to the form of \({\Psi''(s)+\frac{(k_1-k_2s)}{s(1-k_3s)} \Psi'(s)+\frac{(As^2+Bs+C)}{s^2(1-k_3s)^2} \Psi(s)=0}\). The two cases where k 3 = 0 and \({k_3\neq 0}\) are studied. We derive an expression for the energy spectrum and the wave function in terms of generalized hypergeometric functions \({_2F_1(\alpha,\,\beta;\,\gamma;\,k_3s)}\). In order to show the accuracy of this proposed formula, we resort to obtaining bound state solutions for some existing eigenvalue problems in a rather more simplified way. This method has shown to be accurate, efficient, reliable and very easy to use particularly when applied to vast number of quantum potential models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Çiftçi H., Hall R.L., Saad N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 36, 11807 (2003)

    Article  ADS  MATH  Google Scholar 

  2. Çiftçi H., Hall R.L., Saad N.: Perturbation theory in a framework of iteration methods. Phys. Lett. A 340, 388 (2005)

    Article  ADS  MATH  Google Scholar 

  3. Falaye B.J.: Any ℓ-state solutions of the Eckart potential via asymptotic iteration method. Cent. Eur. J. Phys. 10(4), 960 (2012)

    Article  Google Scholar 

  4. Ikhdair S.M., Falaye B.J.: Approximate relativistic bound states of a particle in Yukawa field with Coulomb tensor interaction. Phys Scr. 87, 035002 (2013)

    Article  ADS  Google Scholar 

  5. Oyewumi K.J., Falaye B.J., Onate C.A., Oluwadare O.J., Yahya W.A.: Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model. Mol. Phys. 112, 127 (2013)

    Article  ADS  Google Scholar 

  6. Bayrak O., Boztosun I.: Bound state solutions of the Hulthen potential by using the asymptotic iteration method. Phys. Scr. 76, 92 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bayrak O., Boztosun I., Çiftçi H.: Exact analytical solutions to the kratzer potential by the asymptotic iteration method. Int. J. Quantum Chem. 107, 540 (2007)

    Article  ADS  Google Scholar 

  8. Champion B., Hall R.L., Saad N.: Asymptotic iteration method for singular potentials. Int. J. Mod. Phys. A 23, 1405 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Falaye B.J.: The Klein–Gordon equation with ring-shaped potentials: asymptotic iteration method. J. Math. Phys. 53, 082107 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Falaye B.J.: Arbitrary ℓ-state solutions of the hyperbolical potential by the asymptotic iteration method. Few-Body Syst. 53, 557 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Boztosun I., Karakoç M., Yasuk F., Durmus A.: Asymptotic iteration method solutions to the relativistic Duffin–Kemmer–Petiau equation. J. Math. Phys. 47, 062301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Barakat T.: The asymptotic iteration method for the eigenenergies of the Schrodinger equation with the potential \({V(r) = -Z/r + gr + \lambda r^2}\). J. Phys. A Math. Gen. 39, 823 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Barakat T., Abodayeh K., Mukheimer A.: The asymptotic iteration method for the angular spheroidal eigenvalues with arbitrary complex size parameterc. J. Phys. A Math. Gen. 38, 1299 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Hamzavi M., Rajabi A.A., Hassanabadi H.: Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys. Lett. A 374, 4303 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Aygun M., Bayrak O., Boztosun I.: Solution of the radial Schrödinger equation for the potential family \({V(r) = A/r^2 - B/r + Cr^k}\) using the aymptotic iteration method. J. Phys. B At. Mol. Opt. Phys. 40, 537 (2007)

    Article  ADS  Google Scholar 

  16. Fernandez F.M.: On an iteration method for eigenvalue problems. J. Phys. A Math. Gen. 37, 6173 (2004)

    Article  ADS  MATH  Google Scholar 

  17. Çiftçi H., Hall R.L., Saad N.: Perturbation theory in a framework of iteration methods. Phys. Lett. A 340, 13 (2005)

    Article  Google Scholar 

  18. Barakat T.: The asymptotic iteration method for Dirac and Klein–Gordon equations with a linear scalar potential. Int. J. Mod. Phys. A 21, 4127 (2006)

    Article  ADS  MATH  Google Scholar 

  19. Falaye B.J.: Exact solutions of the Klein–Gordon equation for spherically asymmetrical singular oscillator. Few-Body Syst. 53, 563 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ikhdair S.M., Falaye B.J., Hamzavi M.: Approximate eigensolutions of the deformed Woods–Saxon potential via AIM. Chin. Phys. Lett. 30, 020305 (2013)

    Article  Google Scholar 

  21. Falaye B.J., Ikhdair S.M.: Relativistic symmetries with the trigonometric Pöschl–Teller potential plus Coulomb-like tensor interaction. Chin. Phys. B 22, 060305 (2013)

    Article  Google Scholar 

  22. Durmus A., Yasuk F., Boztosun I.: Exact analytical solution of the Klein–Gordon equation for the poinic atom by asymptotic iteration method. Int. J. Mod. Phys. E 15, 1243 (2006)

    Article  ADS  Google Scholar 

  23. Hamzavi M., Ikhdair S.M., Ita B.I.: Approximate spin and pseudospin solutions to the Dirac equation for the inversely quadratic Yukawa potential and tensor interaction. Phys. Scr. 85, 045009 (2012)

    Article  ADS  Google Scholar 

  24. Falaye B.J., Oyewumi K.J., Ikhdair S.M., Hamzavi M.: Eigensolution techniques, their applications and the Fisher’s information entropy of Tietz–Wei diatomic molecular model. Phys. Scr. 89, 115204 (2014)

    Article  ADS  Google Scholar 

  25. Oyewumi K.J., Falaye B.J., Onate C.A., Oluwadare O.J., Oluwadare O.J.: κ state solutions for the fermionic massive spin-1/2 particles interacting with double ring-shaped Kratzer and oscillator potentials. Int. J. Mod. Phys. 23, 1450005 (2014)

    Article  ADS  Google Scholar 

  26. Chafa F., Chouchaoui A., Hachemane M., Ighezou F.Z.: The quasi-exactly solvable potentials method applied to the three-body problem. Ann. Phys. 322, 1034 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Diaf A., Chouchaoui A.: ℓ-states of the Manning–Rosen potential with an improved approximate scheme and Feynman path integral formalism. Phys. Scr. 84, 015004 (2011)

    Article  ADS  Google Scholar 

  28. Chouchaoui A.: The three-body problem in the path integral formalism. Ann. Phys. 312, 431 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Dong S.H.: Relativistic treatment of spinless particles subject to a rotating Deng–Fan oscillator. Commun. Theor. Phys. 55, 969 (2011)

    Article  ADS  MATH  Google Scholar 

  30. Oyewumi, K.J.: Approximate solutions of the Dirac equation for the Rosen–Morse potential in the presence of spin-orbit and pseudo-orbit centrifugal term. In: Pahlavani, M.R. (ed.) Theoretical Concepts of Quantum Mechanics, vol. 445, chap. 19. INTECH, Croatia (2012)

  31. Guo J.Y., Sheng Z.Q.: Solution of the Dirac equation for the Woods–Saxon potential with spin and pseudospin symmetry. Phys. Lett. A 338, 90 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Qiang W.C., Dong S.H.: Proper quantization rule. EPL 89, 10003 (2010)

    Article  ADS  Google Scholar 

  33. Ma Z.Q., Gonzalez-Cisneros A., Xu B.W., Dong S.H.: Energy spectrum of the trigonometric Rosen–Morse potential using an improved quantization rule. Phys. Lett. A 371, 180 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Dong S.H., Gonzalez-Cisneros A.: Energy spectra of the hyperbolic and second Pöschl–Teller like potentials solved by new exact quantization rule. Ann. Phys. 323, 1136 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Gu X.Y., Dong S.H., Ma Z.Q.: Energy spectra for modified Rosen–Morse potential solved by the exact quantization rule. J. Phys. Math. Theor. 42, 035303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ikhdair S.M., Abu-Hasna J.: Quantization rule solution to the Hulthen potential in arbitrary dimension with a new approximate scheme for the centrifugal term. Phys. Scr. 83, 025002 (2011)

    Article  ADS  Google Scholar 

  37. Dong S.H., Morales D., Garcia-Ravelo J.: Exact quantization rule and its applications to physical potentials. Int. J. Mod. Phys. E 16, 189 (2007)

    Article  ADS  Google Scholar 

  38. Serrano F.A., Gu X.Y., Dong S.H.: Qiang–Dong proper quantization rule and its applications to exactly solvable quantum systems. J. Math. Phys. 51, 082103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. Dong S.H., Cruz-Irisson M.: Energy spectrum for a modified Rosen–Morse potential solved by proper quantization rule and its thermodynamic properties. J. Math. Chem. 50, 881 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gu X.Y., Dong S.H.: Energy spectrum of the Manning–Rosen potential including centrifugal term solved by exact and proper quantization rules . J. Math. Chem. 49, 2053 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Oluwadare O.J., Oyewumi K.J., Akoshile C.O., Babalola O.A.: Approximate analytical solutions of the relativistic equations with the Deng–Fan molecular potential including a Pekeris-type approximation to the (pseudo or) centrifugal term. Phys. Scr. 86, 035002 (2012)

    Article  ADS  Google Scholar 

  42. Sun G.H., Dong S.H.: Exact solutions of Dirac equation for a new spherically asymmetrical singular oscillator. Mod. Phys. Lett. A 25, 2849 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Falaye B.J., Oyewumi K.J.: Solutions of the Dirac equation with spin and pseudospin symmetry for the trigonometric scarf potential in D-dimensions. Afr. Rev. Phys. 25, 211 (2011)

    Google Scholar 

  44. Ikhdair S.M.: Approximate κ-state solutions to the Dirac–Yukawa problem based on the spin and pseudospin symmetry. Cent. Eur. J. Phys. 10, 361 (2012)

    Article  Google Scholar 

  45. Hamzavi M., Movahedi M., Thylwe K.E., Rajabi A.A.: Approximate analytical solution of the Yukawa potential with arbitrary angular momenta. Chin. Phys. Lett. 29, 080302 (2012)

    Article  ADS  Google Scholar 

  46. Hamzavi M., Movahedi M., Thylwe K.E.: The rotation–vibration spectrum of diatomic molecules with the Tietz–Hua rotating oscillator. Int. J. Quantum Chem. 112, 2701 (2012)

    Article  Google Scholar 

  47. Hamzavi M., Ikhdair S.M.: Approximate ℓ-state solution of the trigonometric Pöschl–Teller potential. Mol. Phys. 110, 3031 (2012)

    Article  ADS  Google Scholar 

  48. Ikhdair S.M., Sever R.: Two approximation schemes to the bound states of the Dirac–Hulthen problem. J. Phys. A Math. Theor. 44, 355301 (2011)

    Article  MathSciNet  Google Scholar 

  49. Nikiforov A.F., Uvarov V.B.: Special Functions of Mathematical Physics. Birkhauser, Basel (1988)

    Book  MATH  Google Scholar 

  50. Tezcan C., Sever R.: A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48, 337 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  51. Yahya W.A., Falaye B.J., Oluwadare O.J., oyewumi K.J.: Solutions of the Dirac equation with the shifted Deng–Fan potential including Yukawa-like tensor interaction. Int. J. Mod. Phys. E 22, 1350062 (2013)

    Article  ADS  Google Scholar 

  52. Falaye B.J., Oyewumi K.J., Abbas M.: Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method. Chin. Phys. B 22, 110301 (2013)

    Article  ADS  Google Scholar 

  53. Hamzavia M., Ikhdair S.M., Falaye B.J.: Dirac bound states of anharmonic oscillator in external fields. Ann. Phys. 341, 153 (2014)

    Article  ADS  Google Scholar 

  54. Ikhdair S.M., Falaye B.J.: Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction. Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  55. Ikhdair S.M., Falaye B.J.: A charged spinless particle in scalar–vector harmonic oscillators with uniform magnetic and Aharonov–Bohm flux fields. J. Assoc. Arab Univ. Basic Appl. Sci 16, 1 (2014)

    Google Scholar 

  56. Ikhdair S.M., Falaye B.J.: Two approximate analytic eigensolutions of the Hellmann potential with any arbitrary angular momentum. Z. Naturforsch. 68a, 701 (2013)

    Article  Google Scholar 

  57. Ibrahim T.T., Oyewumi K.J., Wyngaardt S.M.: Analytical solution of N-dimensional Klein–Gordon and Dirac equations with Rosen–Morse potential. Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  58. Hassanabadi H., Maghsoodi E., Zarrinkamar S.: Relativistic symmetries of Dirac equation and the Tietz potential. Eur. Phys. J. Plus 127, 31 (2012)

    Article  Google Scholar 

  59. Hassanabadi H., Maghsoodi E., Zarrinkamar S., Rahimov H.: An approximate solution of the Dirac equation for hyperbolic scalar and vector potentials and a Coulomb tensor interaction by SUSYQM. Mod. Phys. Lett. A. 26, 2703 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Hassanabadi H., Lu L.L., Zarrinkamar S., Liu G., Rahimov H.: Approximate solutions of Schrödinger equation under Manning–Rosen potential in arbitrary dimension via SUSYQM. Acta Phys. Pol. A 122, 650 (2012)

    Google Scholar 

  61. Hassanabadi H., Maghsoodi E., Aydogdu A.: Dirac particles in the presence of the Yukawa potential plus a tensor interaction in SUSYQM framework. Phys. Scr. 86, 015005 (2012)

    Article  ADS  Google Scholar 

  62. Oyewumi K.J., Akoshile C.O.: Bound-state solutions of the Dirac–Rosen–Morse with spin and psedospin symmetry. Eur. Phys. J. A 45, 311 (2010)

    Article  ADS  Google Scholar 

  63. Tezcan C., Sever R.: A parametric approach to supersymmetric quantum mechanics in the solution of Schrödinger equation. J. Math. Phys. 55, 032104 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  64. Roy A.K.: Confinement in 3D polynomial oscillators through a generalized pseudospectral method. Mod. Phys. Lett. A 29, 1450104 (2014)

    Article  ADS  Google Scholar 

  65. Roy A.K.: Ro-vibrational studies of diatomic molecules in a shifted Deng–Fan oscillator potential. Int. J. Quantum Chem. 114, 383 (2014)

    Article  Google Scholar 

  66. Roy A.K.: Studies on the bound-state spectrum of hyperbolic potential. Few-Body Syst. 55, 143 (2014)

    Article  ADS  Google Scholar 

  67. Roy A.K.: Ro-vibrational spectroscopy of molecules represented by a Tietz–Hua oscillator potential. J. Math. Chem. 52, 1405 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  68. Roy A.K.: Studies on bound-state spectra of ManningRosen potential. Mod. Phys. Lett. A 29, 1450042 (2014)

    Article  ADS  Google Scholar 

  69. Alici H., Taseli H.: The Laguerre pseudospectral method for the radial Schrödinger equation. Appl. Numer. Math. 87, 87 (2014)

    Article  MathSciNet  Google Scholar 

  70. Scheck, F.: Quantum Physics. Springer, Berlin. ISBN:978-3-540-25645-8 (2007)

  71. Ikhdair S.M.: On the bound-state solutions of the Manning–Rosen potential including an improved approximation to the orbital centrifugal term. Phys. Scr. 83, 015010 (2011)

    Article  ADS  Google Scholar 

  72. Ikhdair S.M.: An improved approximation scheme for the centrifugal term and the Hulthen potential. Eur. Phys. J. A 39, 307 (2009)

    Article  ADS  Google Scholar 

  73. Ikhdair S.M., Sever R.: Approximate bound states of the Dirac equation with some physical quantum potentials. Appl. Math. Comput. 216, 911 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  74. Falaye B.J., Oyewumi K.J., Ibrahim T.T., Punyasena M.A., Onate C.A.: Bound state solutions of the Manning–Rosen potential. Can. J. Phys. 91, 98 (2013)

    Article  Google Scholar 

  75. Dong S.H., Qiang W.C., Sun G.H., Bezerra V.B.: Analytical approximations to the ℓ-wave solutions of the Schrödinger equation with the Eckart potential. J. Phys. A Math. Theor. 40, 10535 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Ikhdair S.M., Sever R.: Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. J. Math. Chem. 45, 1137 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  77. Ikhdair S.M., Sever R.: Polynomial solution of non-central potentials. Int. J. Theor. Phys. 46, 2384 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  78. Gönül B., Zorba I.: Supersymmetric solutions of non-central potentials. Phys. Lett. A 269, 83 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. Hartmann H., Hartmann H.: Spin-orbit coupling for the motion of a particle in a ring-shaped potential. Int. J. Quantum Chem. 18, 125 (1980)

    Article  Google Scholar 

  80. Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall Professional Technical Reference. ISBN-13:9780131244054 (1995)

  81. Ikhdair S.M., Sever R.: Relativistic solution in D-dimensions to a spin-zero particle for equal scalar and vector ring-shaped Kratzer potential. Cent. Eur. J. Phys. 6, 141 (2008)

    Article  Google Scholar 

  82. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, 3rd edn. Springer, Berlin (2000). ISBN:3-540-67457-8

  83. Liu X.Y., Wei G.F., Long C.Y.: Arbitrary wave relativistic bound state solutions for the Eckart potential. Int. J. Theor. Phys. 48, 463 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  84. Bayrak O., Boztosun I.: The pseudospin symmetric solution of the Morse potential for any κ state. J. Phys. A Math. Theor. 40, 11119 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Motavalli H., Fathezadeh S., Parhizkar M.: An algebraic approach to the Kemmer equation for dirac oscillator. Int. J. Theor. Phys. 50, 3390 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Falaye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falaye, B.J., Ikhdair, S.M. & Hamzavi, M. Formula Method for Bound State Problems. Few-Body Syst 56, 63–78 (2015). https://doi.org/10.1007/s00601-014-0937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0937-9

Keywords

Navigation