Skip to main content
Log in

The Generalized Uncertainty Principle and Harmonic Interaction in Three Spatial Dimensions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In three spatial dimensions, the generalized uncertainty principle is considered under an isotropic harmonic oscillator interaction in both non-relativistic and relativistic regions. By using novel transformations and separations of variables, the exact analytical solution of energy eigenvalues as well as the wave functions is obtained. Time evolution of the non-relativistic region is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amati D., Ciafaloni M., Veneziano G.: Can space-time be probed below the string size. Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  2. Maggiore M.: Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 49, 5182 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. Maggiore M.: The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 319, 83 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Majumder B.: Effects of GUP in quantum cosmological perfect fluid models. Phys. Lett. B 699, 315 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sprenger M., Nicolini P., Bleicher M.: Physics on smallest scales - an introduction to minimal length phenomenology. Eur. J. Phys. 33, 853–862 (2012)

    Article  MATH  Google Scholar 

  6. Hossenfelder S.: Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 16, 2 (2013)

    Article  ADS  Google Scholar 

  7. Mead, C.A.: Possible connection between gravitation and fundamental length. Phys. Rev. 135, B849 (1964)

  8. Mead C.A.: Observable consequences of fundamental-length hypotheses. Phys. Rev. 143, 990 (1966)

    Article  ADS  Google Scholar 

  9. Maggiore M.: A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65 (1993)

    Article  ADS  Google Scholar 

  10. Castro, C.: String theory, scale relativity and the generalized uncertainty principle. hep-th/9512044, preprint (1995)

  11. Chen, P.: The generalized uncertainty principle and dark matter. astro-ph/0305025, preprint (2003)

  12. Camacho, A.: Time evaluation of a quantum particle and a generalized uncertainty principle. qr-qc/0206006, preprint (2002)

  13. Capozziello, S., Lambiase, G., Scarpetta, G.: Generalized uncertainty principle from quantum geometry. gr-qc/9910017, preprint (1999)

  14. Hoyle C.D., Schmidt U., Heckel B.R., Adelberger E.G., Gundlach J.H., Kapner D.J., Swanson H.E.: Submillimeter test of the gravitational inverse-square law: a search for “Large” extra dimensions. Phys. Rev. Lett. 86, 1418 (2001)

    Article  ADS  Google Scholar 

  15. Nozari, K.: Generalized uncertainty principle in a simple varying speed of light model. Int. J. Theor. Phys. 44(8), 1325–1335 (2005)

  16. Kempf A., Mangano G., Mann R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Das S., Vagenas E.C.: Universality of quantum gravity corrections. Can. J. Phys. 87, 233 (2009)

    Article  ADS  Google Scholar 

  18. Das S., Vagenas E.C., Ali A.F.: Discreteness of space from GUP. Phys. Lett. B 690, 407 (2010)

    Article  ADS  Google Scholar 

  19. Nozari, K., Azizi, T.: Gravitational induced uncertainty and dynamics of harmonic oscillator. Gen. Relativ. Gravit. 38(2), 325–331 (2006)

  20. Amelino-Camelia G.: Testable scenario for relativity with minimal length. Phys. Lett. B 510, 255 (2001)

    Article  ADS  MATH  Google Scholar 

  21. Hassanabadi H., Zarrinkamar S., Maghsoodi E.: Scattering states ofWoods–Saxon interaction in minimal length quantum mechanics. Phys. Lett. B 718, 678–682 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sajadi S.S.: Formulation of spin-1 fields in deformed space-time with minimal length based on Quesne-Thachuk algebra. Eur. Phys. J. Plus 128, 57 (2013)

    Article  Google Scholar 

  23. Hassanabadi H., Zarrinkamar S., Rajabi A.A.: A simple efficient methodology for Dirac equation in minimal length quantum mechanics. Phys. Lett. B 718, 1111–1113 (2013)

    Article  ADS  Google Scholar 

  24. Hassanabadi H., Zarrinkamar S., Maghsoodi E.: Minimal length Dirac equation revisited. Eur. Phys. J. Plus 128, 25 (2013)

    Article  Google Scholar 

  25. Harbach U., Hossenfelder S., Bleicher M., Stoecker H.: Probing the minimal length scale by precision tests of the muon g-2. Phys. Lett. B 584, 109 (2004)

    Article  ADS  Google Scholar 

  26. Kothawala D., Sriramkumar L., Shankaranarayanan S., Padmanabhan T.: Path integral duality modified propagators in spacetimes with constant curvature. Phys. Rev. 80, 044005 (2009)

    ADS  Google Scholar 

  27. Panella O.: Casimir–Polder intermolecular forces in minimal length theories. Phys. Rev. D 76, 045012 (2007)

    Article  ADS  Google Scholar 

  28. Chang L.N., Minic D., Okamura N., Takeuchi T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D65, 125027 (2002)

    ADS  MathSciNet  Google Scholar 

  29. Kempf A.: Nonpointlike particles in harmonic oscillators. J. Phys. A Math. Gen. 30, 2093 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Dadic I., Jonke L., Meljanac S.: Harmonic oscillator with minimal length uncertainty relations and ladder operators. Phys. Rev. D. 67, 087701 (2003)

    Article  ADS  Google Scholar 

  31. Brau F.: Minimal length uncertainty relation and hydrogen atom. J. Phys. A32, 7691 (1999)

    ADS  MathSciNet  Google Scholar 

  32. Oakes T.L.A., Francisco R.O., Fabris J.C., Nogueira J.A.: Ground state of the hydrogen atom via Dirac equation in a minimal length scenario. Eur. Phys. J. C 73, 2495 (2013)

    Article  ADS  Google Scholar 

  33. Das S., Vagenas E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  34. Menculini L., Panella O., Roy P.: Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length. Phys. Rev. D 87, 065017 (2013)

    Article  ADS  Google Scholar 

  35. Lewis, Z., Roman, A., Takeuchi, T.: Position and momentum uncertainties of a particle in a V-shaped potential under the minimal length uncertainty relation. arXiv:1402.7191v1

  36. Hossenfelder S.: The minimal length and large extra dimensions. Mod. Phys. Lett. A 19, 2727 (2004)

    Article  ADS  MATH  Google Scholar 

  37. Chargui Y., Chetouani L., Trabelsi A.: Path integral approach to the D-dimensional harmonic oscillator minimal length. Phys. Scr. 81, 015005 (2010)

    Article  ADS  Google Scholar 

  38. Chargui,Y., Chetouani, L., Trabelsi,A.: Exact solution ofD-dimensionalKlein–Gordon oscillatorwith minimal length. Commun. Theor. Phys. 53, 231 (2010)

    Article  ADS  MATH  Google Scholar 

  39. Quesne C., Tkachuk V.M.: More on a SUSYQM approach to the harmonic oscillator with nonzero minimal uncertainties in position or momentum. J.Phys. A38, 1747 (2005)

    ADS  MathSciNet  Google Scholar 

  40. Chargui, Y., Trabelsi, A.: Path integral treatment of the one-dimensional Klein–Gordon oscillator with minimal length. Phys. Scr. 84, 045019 (2011)

    Article  ADS  Google Scholar 

  41. Sakurai, J.J.: Advanced Quantum Mechanics. Addison Wesley (1967) ISBN 0-201-06710-2

  42. Davydov, A.S.: Quantum Mechanics, 2nd Edn. Pergamon (1976). ISBN 0-08-020437-6

  43. Fowles, G.R., Cassiday, G.L.: Analytical Mechanics. Thomson (2005)

  44. Hassanabadi, H., Yazarloo, B.H., Salehi, N.: Pseudospin and spin symmetry of Dirac equation under Deng–Fan potential and Yukawa potential as a tensor interaction. Indian J. Phys. doi:10.1007/s12648-013-0426-x

  45. Nikiforov A.F., Uvarov V.B.: Spherical Function of Mathematical Physics. Birkhauser, Berlin (1988)

    Book  Google Scholar 

  46. Ikot A.N., Hassanabadi H., Yazarlooand B.H., Zarrinkamar S.: Approximation relativistic k-state solutions to the Dirac-hyperbolic problem with generalized tensor interactions. Int. J. Mod. Phys. E 22, 1350048 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hassanabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanabadi, H., Hooshmand, P. & Zarrinkamar, S. The Generalized Uncertainty Principle and Harmonic Interaction in Three Spatial Dimensions. Few-Body Syst 56, 19–27 (2015). https://doi.org/10.1007/s00601-014-0910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0910-7

Keywords

Navigation