Skip to main content
Log in

Photon Asymmetries in \({nd\rightarrow}\) 3 Using EFT(\({/\!\!\!\pi}\)) Approach

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The parity-violating Lagrangian of the weak nucleon-nucleon (NN) interaction in the pionless effective field theory (EFT(\({/\!\!\!\pi}\))) approach contains five independent unknown low-energy coupling constants (LECs). The photon asymmetry with respect to neutron polarization in \({np\rightarrow d\gamma A_\gamma^{np}}\), the circular polarization of outgoing photon in \({np\rightarrow d\gamma P_\gamma^{np}}\), the neutron spin rotation in hydrogen \({\frac{1}{\rho}\frac{d\phi^{np}}{dl}}\) , the neutron spin rotation in deuterium \({\frac{1}{\rho}\frac{d\phi^{nd}}{dl}}\) and the circular polarization of γ-emission in \({nd\rightarrow}\) 3 \({P^{nd}_\gamma}\) are the parity-violating observables which have been recently calculated in terms of parity-violating LECs in the EFT(\({/\!\!\!\pi}\)) framework. We obtain the LECs by matching the parity-violating observables to the Desplanques, Donoghue, and Holstein (DDH) best value estimates. Then, we evaluate photon asymmetry with respect to the neutron polarization \({a^{nd}_\gamma}\) and the photon asymmetry in relation to deuteron polarization \({A^{nd}_\gamma}\) in \({nd\rightarrow}\) 3 process. We finally compare our EFT(\({/\!\!\!\pi}\)) photon asymmetries results with the experimental values and the previous calculations based on the DDH model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danilov G.S.: Circular polarization of γ quanta in absorption of neutrons by protons and isotopic structure of weak interactions. Phys. Lett. 18, 40 (1965)

    Article  ADS  Google Scholar 

  2. Desplanques B., Missimer J.: An analysis of parity violating nuclear effects at low energy. Nucl. Phys. A 300, 286 (1978)

    Article  ADS  Google Scholar 

  3. Desplanques B., Donoghue J.F, Holstein B.R.: Unified treatment of the parity violating nuclear force. Ann. Phys. 124, 449 (1980)

    Article  ADS  Google Scholar 

  4. Schindler M.R., Springer R.P.: The theory of parity violation in few-nucleon systems. Prog. Part Nucl. Phys. 72, 1 (2013)

    Article  ADS  Google Scholar 

  5. Schindler, M.R., Springer, R.P.: Two parity-violating asymmetries from image in pionless effective field theories. Nucl. Phys. A 846, 51. [arXiv:nucl-th/0907.5358] (2010)

  6. Griesshammer H.W., Schindler M.R., Springer R.P.: Parity-violating neutron spin rotation in hydrogen and deuterium. Eur. Phys. J. A 48, 7 (2012)

    Article  ADS  Google Scholar 

  7. Arani M.M., Bayegan S.: Parity-violating photon circular polarization in nd → 3H γ with effective field theory at thermal energy. Eur. Phys. J. A 49, 117 (2013)

    Article  ADS  Google Scholar 

  8. Cavaignac J.F., Vignon B., Wilson R.: Search for parity violation in neutron-proton capture. Phys. Lett. B 67, 148 (1977)

    Article  ADS  Google Scholar 

  9. Alberi J. et al.: Studies of parity violation using polarized slow neutron beams. Can. J. Phys. 66, 542 (1988)

    Article  ADS  Google Scholar 

  10. Snow W.M. et al.: Measurement of the parity violating asymmetry Aγ in n+p→d + γ. Phys. Res. A 440, 729 (2000)

    Google Scholar 

  11. Knyazkov V.A. et al.: A new experimental study of the circular polarization of np capture γ-rays. Nucl. Phys. A 417, 209 (1984)

    Article  ADS  Google Scholar 

  12. Phillips D.R, Rupak G., Savage M.J.: Improving the convergence of NN effective field theory. Phys. Lett. B 473, 209 (2000)

    Article  ADS  Google Scholar 

  13. Griesshammer H.W.: Improved convergence in the three-nucleon system at very low energies. Nucl. Phys. A 744, 192 (2004)

    Article  ADS  Google Scholar 

  14. Griesshammer, H.W., Schindler, M.R.: On parity-violating three-nucleon interactions and the predictive power of few-nucleon EFT at very low energies. Eur. Phys. J. A 46, 73. [arXiv:nucl-th/10070734] (2010)

  15. Song, Y., Lazauskas, R., Gudkov, V.: Parity violation in radiative neutron capture on the deuteron. Phys. Rev. C bf 86, 045502. [arxiv:nucl-th/1207.7039v1] (2012)

  16. Schiavilla R., Viviani M., Girlanda L., Kievsky A., Marcucci L.E.: Neutron spin rotation in n-d scattering. Phys. Rev. C 78, 014002 (2008)

    Article  ADS  Google Scholar 

  17. Schiavilla R., Viviani M., Girlanda L., Kievsky A., Marcucci L.E.: Erratum: Neutron spin rotation  in  n-d scattering [Phys. Rev. C 78, 014002 (2008)]. Phys. Rev. C 83, 029902 (2011)

    Article  ADS  Google Scholar 

  18. Desplanques B., Benayoun J.J.: Parity non-conserving effects in thermal neutron-deuteron radiative capture. Nucl. Phys. A 458, 689 (1986)

    Article  ADS  Google Scholar 

  19. Avenier A. et al.: Parity violation in nd capture. Phys. Lett. B 137, 125 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moeini Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arani, M.M., Bayegan, S. Photon Asymmetries in \({nd\rightarrow}\) 3 Using EFT(\({/\!\!\!\pi}\)) Approach. Few-Body Syst 55, 1099–1108 (2014). https://doi.org/10.1007/s00601-014-0898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0898-z

Keywords

Navigation