Skip to main content
Log in

Clinical relevance of the number of interleukin-17-producing CD 8+ T cells in patients with gastric cancer

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

There is accumulating evidence that inflammation is linked to cancer development and progression. Interleukin-17 (IL-17), an inflammatory cytokine, is produced by CD 8+ T cells (Tc17 cells); however, the specific role of Tc17 cells in tumor immunity against gastric cancer remains unclear.

Methods

The prevalence of Tc17 cells in both peripheral blood mononuclear cells and gastric tissue was evaluated by multicolor flow cytometry and the concentration of IL-17 in sera was quantitated by an enzyme-linked immunosorbent assay.

Results

Circulating Tc17 cells were significantly more numerous in gastric cancer patients than in controls, and significantly more numerous before surgery than after surgery. IL-17 concentrations in gastric cancer patients and healthy controls were 0.51 ± 0.54 and 0.084 ± 0.084 pg/mL, respectively, with this difference being significant. The percentage of Tc17 cells was significantly related to serum IL-17 concentration. Tc17 cells were significantly more numerous than peripheral blood mononuclear cells in gastric cancer tissue. Furthermore, Tc17 cells were more numerous in cancerous gastric tissue than in normal gastric tissue.

Conclusions

Tc17 cells may be the main source of IL-17 in gastric cancer patients and thus involved in the progression of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kai H, Kitadai Y, Kodama M, Cho S, Kuroda T, Ito M, et al. Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res. 2005;25:709–13.

    CAS  PubMed  Google Scholar 

  3. Miki C, Konishi N, Ojima E, Hatada T, Inoue Y, Kusunoki M. C-reactive protein as a prognostic variable that reflects uncontrolled up-regulation of the IL-1-IL-6 network system in colorectal carcinoma. Dig Dis Sci. 2004;49:970–6.

    Article  CAS  PubMed  Google Scholar 

  4. Deans DA, Wigmore SJ, Gilmour H, Paterson-Brown S, Ross JA, Fearon KC. Elevated tumour interleukin-1beta is associated with systemic inflammation: a marker of reduced survival in gastro-oesophageal cancer. Br J Cancer. 2006;95:1568–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Punnonen J, Heinonen PK, Kuoppala T, Jansen CT, Punnonen R. Production of interleukin-1 beta and tumour necrosis factor-alpha in patients with benign or malignant ovarian tumours. J Cancer Res Clin Oncol. 1991;117:587–92.

    Article  CAS  PubMed  Google Scholar 

  6. Klein B, Bataille R. Cytokine network in human multiple myeloma. Hematol Oncol Clin North Am. 1992;6:273–84.

    CAS  PubMed  Google Scholar 

  7. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol. 1995;155:5483–6.

    CAS  PubMed  Google Scholar 

  8. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.

    Article  CAS  PubMed  Google Scholar 

  9. Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995;3:811–21.

    Article  CAS  PubMed  Google Scholar 

  10. Aarvak T, Chabaud M, Miossec P, Natvig JB. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol. 1999;162:1246–51.

    CAS  PubMed  Google Scholar 

  11. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160:3513–21.

    CAS  PubMed  Google Scholar 

  12. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  CAS  PubMed  Google Scholar 

  13. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    Article  CAS  PubMed  Google Scholar 

  14. Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol. 2006;6:329–33.

    Article  CAS  PubMed  Google Scholar 

  15. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity. 2008;28:445–53.

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206:1457–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003;101:2620–7.

    Article  CAS  PubMed  Google Scholar 

  18. Iida T, Iwahashi M, Katsuda M, Ishida K, Nakamori M, Nakamura M, et al. Tumor-infiltrating CD4 + Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol Rep. 2011;25:1271–7.

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407:348–54.

    Article  CAS  PubMed  Google Scholar 

  20. Yamada Y, Saito H, Ikeguchi M. Prevalence and clinical relevance of Th17 cells in patients with gastric cancer. J Surg Res. 2012;178:685–91.

    Article  CAS  PubMed  Google Scholar 

  21. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  22. Blaser MJ. Helicobacter pylori and gastric diseases. BMJ. 1998;316:1507–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dixon MF. Pathophysiology of Helicobacter pylori infection. Scand J Gastroenterol Suppl. 1994;201:7–10.

    Article  CAS  PubMed  Google Scholar 

  24. Shimoyama T, Crabtree JE. Bacterial factors and immune pathogenesis in Helicobacter pylori infection. Gut. 1998;43(Suppl 1):S2–5.

    PubMed Central  PubMed  Google Scholar 

  25. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325:1127–31.

    Article  CAS  PubMed  Google Scholar 

  26. Sipponen P. Gastric cancer–a long-term consequence of Helicobacter pylori infection? Scand J Gastroenterol Suppl. 1994;201:24–7.

    Article  CAS  PubMed  Google Scholar 

  27. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–first American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res. 1992;52:6735–40.

    CAS  PubMed  Google Scholar 

  28. Solcia E, Fiocca R, Luinetti O, Villani L, Padovan L, Calistri D, et al. Intestinal and diffuse gastric cancers arise in a different background of Helicobacter pylori gastritis through different gene involvement. Am J Surg Pathol. 1996;20(Suppl 1):S8–22.

    Article  PubMed  Google Scholar 

  29. Carneiro F, Seixas M, Sobrinho-Simoes M. New elements for an updated classification of the carcinomas of the stomach. Pathol Res Pract. 1995;191:571–84.

    Article  CAS  PubMed  Google Scholar 

  30. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009;114:1141–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF. Generation and regulation of human CD4 + IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA. 2008;105:15505–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kesselring R, Thiel A, Pries R, Trenkle T, Wollenberg B. Human Th17 cells can be induced through head and neck cancer and have a functional impact on HNSCC development. Br J Cancer. 2010;103:1245–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun. 2008;374:533–7.

    Article  CAS  PubMed  Google Scholar 

  34. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115:5385–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ikeguchi M, Hatada T, Yamamoto M, Miyake T, Matsunaga T, Fukumoto Y, et al. Serum interleukin-6 and -10 levels in patients with gastric cancer. Gastric Cancer. 2009;12:95–100.

    Article  CAS  PubMed  Google Scholar 

  36. Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, et al. An elevated serum level of transforming growth factor-beta 1 (TGF-beta 1) significantly correlated with lymph node metastasis and poor prognosis in patients with gastric carcinoma. Anticancer Res. 2000;20:4489–93.

    CAS  PubMed  Google Scholar 

  37. Zhuang Y, Peng LS, Zhao YL, Shi Y, Mao XH, Chen W, et al. CD8(+) T cells that produce interleukin-17 regulate myeloid-derived suppressor cells and are associated with survival time of patients with gastric cancer. Gastroenterology. 2012;143(951–62):e8.

    PubMed  Google Scholar 

  38. Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009;50:980–9.

    Article  CAS  PubMed  Google Scholar 

  39. Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, et al. The expression of transforming growth factor-beta1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer. 1999;86:1455–62.

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Du J, Liu L, Li Q, Rong W, Wang L, et al. Elevated pretherapy serum IL17 in primary hepatocellular carcinoma patients correlate to increased risk of early recurrence after curative hepatectomy. PLoS ONE. 2012;7:e50035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Conflict of interest

Hiroaki Saito and other co-authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Saito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, H., Yamada, Y., Takaya, S. et al. Clinical relevance of the number of interleukin-17-producing CD 8+ T cells in patients with gastric cancer. Surg Today 45, 1429–1435 (2015). https://doi.org/10.1007/s00595-015-1165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-015-1165-8

Keywords

Navigation