Skip to main content

Advertisement

Log in

Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Mechanical loading represents an integral part of intervertebral disc (IVD) homeostasis. This review aims to summarise recent knowledge on the effects of mechanical loads on the IVD and the disc cells, taking into consideration the changes that IVDs undergo during ageing and degeneration, from the macroscopic to the cellular and subcellular level.

Methods

Non-systematic literature review.

Results

Several scientific papers investigated the external loads that act on the spine and the resulting stresses inside the IVD, which contribute to estimate the mechanical stimuli that influence the cells that are embedded within the disc matrix. As disc cell responses are also influenced by their biochemical environment, recent papers addressed the role that degradation pathways play in the regulation of (1) cell viability, proliferation and differentiation and (2) matrix production and turnover. Special emphasis was put on the intracellular-signalling pathways, as mechanotransduction pathways play an important role in the maintenance of normal disc metabolism and in disc degenerative pathways.

Conclusions

Disc cells are exposed to a wide range of mechanical loads, and the biochemical environment influences their responses. Degeneration-associated alterations of the disc matrix change the biochemical environment of disc cells and also the mechanical properties of the disc matrix. Recent studies indicate that these factors interact and regulate disc matrix turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abouhossein A, Weisse B, Ferguson SJ (2011) A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput Methods Biomech Biomed Engin 14(6):527–537

    PubMed  Google Scholar 

  2. Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28(7):384–389

    CAS  PubMed  Google Scholar 

  3. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972

    CAS  PubMed  Google Scholar 

  4. Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Lariviere C (2010) A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings. J Biomech 43(3):485–491

    CAS  PubMed  Google Scholar 

  5. Barbir A, Godburn KE, Michalek AJ, Lai A, Monsey RD, Iatridis JC (2011) Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Spine 36(8):607–614

    PubMed Central  PubMed  Google Scholar 

  6. Barrey C, Roussouly P, Perrin G, Le Huec JC (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(Suppl 5):626–633

    PubMed Central  PubMed  Google Scholar 

  7. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27(23):2631–2644

    PubMed  Google Scholar 

  8. Boubriak OA, Watson N, Sivan SS, Stubbens N, Urban JP (2013) Factors regulating viable cell density in the intervertebral disc: blood supply in relation to disc height. J Anat 222(3):341–348

    PubMed  Google Scholar 

  9. Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R (2009) 2009 ISSLS Prize Winner: does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine (Phila Pa 1976) 34(21):2338–2345

    Google Scholar 

  10. Cho H, Seth A, Warmbold J, Robertson JT, Hasty KA (2011) Aging affects response to cyclic tensile stretch: paradigm for intervertebral disc degeneration. Eur Cell Mater 22:137–145 (discussion 145–6)

    CAS  PubMed  Google Scholar 

  11. Christophy M, Faruk Senan NA, Lotz JC, O’Reilly OM (2012) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11(1–2):19–34

    PubMed  Google Scholar 

  12. Court C, Chin JR, Liebenberg E, Colliou OK, Lotz JC (2007) Biological and mechanical consequences of transient intervertebral disc bending. Eur Spine J 16(11):1899–1906

    PubMed Central  PubMed  Google Scholar 

  13. Dolan P, Adams MA (2001) Recent advances in lumbar spinal mechanics and their significance for modelling. Clin Biomech (Bristol, Avon) 16(Suppl 1):S8–S16

    Google Scholar 

  14. Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12(Suppl 2):S97–S103

    PubMed Central  PubMed  Google Scholar 

  15. Fernando HN, Czamanski J, Yuan TY, Gu W, Salahadin A, Huang CY (2011) Mechanical loading affects the energy metabolism of intervertebral disc cells. J Orthop Res: Off Pub Orthop Res Soc 29(11):1634–1641

    Google Scholar 

  16. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2):1081–1101

    PubMed  Google Scholar 

  17. Gagnon D, Arjmand N, Plamondon A, Shirazi-Adl A, Lariviere C (2011) An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine. J Biomech 44(8):1521–1529

    PubMed  Google Scholar 

  18. Gantenbein B, Grunhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K (2006) An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine 31(23):2665–2673

    PubMed  Google Scholar 

  19. Gilbert HT, Hoyland JA, Freemont AJ, Millward-Sadler SJ (2011) The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration. Arthr Res Ther 13(1):R8

    CAS  Google Scholar 

  20. Gordeladze JO, Djouad F, Brondello JM, Noel D, Duroux-Richard I, Apparailly F, Jorgensen C (2009) Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol Sin 30(10):1369–1384

    CAS  PubMed  Google Scholar 

  21. Grivas TB, Vasiliadis ES, Kaspiris A, Khaldi L, Kletsas D (2011) Expression of matrix metalloproteinase-1 (MMP-1) in Wistar rat’s intervertebral disc after experimentally induced scoliotic deformity. Scoliosis 6(1):9

    PubMed Central  PubMed  Google Scholar 

  22. Guehring T, Unglaub F, Lorenz H, Omlor G, Wilke HJ, Kroeber MW (2006) Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Eur Spine J 15(5):597–604

    PubMed Central  PubMed  Google Scholar 

  23. Haglund L, Moir J, Beckman L, Mulligan KR, Jim B, Ouellet JA, Roughley P, Steffen T (2011) Development of a bioreactor for axially loaded intervertebral disc organ culture. Tissue Eng Part C Methods 17(10):1011–1019

    CAS  PubMed  Google Scholar 

  24. Han KS, Rohlmann A, Yang SJ, Kim BS, Lim TH (2011) Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture. Med Eng Phys 33(4):472–478

    PubMed  Google Scholar 

  25. Han KS, Zander T, Taylor WR, Rohlmann A (2012) An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med Eng Phys 34(6):709–716

    PubMed  Google Scholar 

  26. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22(10):1085–1091

    CAS  PubMed  Google Scholar 

  27. Haschtmann D, Stoyanov JV, Ferguson SJ (2006) Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 24(10):1957–1966

    CAS  PubMed  Google Scholar 

  28. Hsieh AH, Twomey JD (2010) Cellular mechanobiology of the intervertebral disc: new directions and approaches. J Biomech 43(1):137–145

    PubMed Central  PubMed  Google Scholar 

  29. Iatridis JC, MacLean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am 88(Suppl 2):41–46

    PubMed Central  PubMed  Google Scholar 

  30. Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24(10):996–1002

    CAS  PubMed  Google Scholar 

  31. Illien-Junger S, Gantenbein-Ritter B, Grad S, Lezuo P, Ferguson SJ, Alini M, Ito K (2010) The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine 35(19):1744–1752

    PubMed  Google Scholar 

  32. Illien-Junger S, Pattappa G, Peroglio M, Benneker LM, Stoddart MJ, Sakai D, Mochida J, Grad S, Alini M (2012) Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine 37(22):1865–1873

    PubMed  Google Scholar 

  33. Johnson WE, Patterson AM, Eisenstein SM, Roberts S (2007) The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study. Spine 32(12):1295–1302

    PubMed  Google Scholar 

  34. Kasra M, Goel V, Martin J, Wang ST, Choi W, Buckwalter J (2003) Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J Orthop Res 21(4):597–603

    PubMed  Google Scholar 

  35. Kasra M, Merryman WD, Loveless KN, Goel VK, Martin JD, Buckwalter JA (2006) Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J Orthop Res 24(10):1967–1973

    PubMed  Google Scholar 

  36. Kletsas D, Basdra EK, Papavassiliou AG (2002) Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells. J Cell Physiol 190(3):313–321

    CAS  PubMed  Google Scholar 

  37. Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2009) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27(6):800–806

    PubMed Central  PubMed  Google Scholar 

  38. Korecki CL, MacLean JJ, Iatridis JC (2008) Dynamic compression effects on intervertebral disc mechanics and biology. Spine 33(13):1403–1409

    PubMed Central  PubMed  Google Scholar 

  39. Le Huec JC, Saddiki R, Franke J, Rigal J, Aunoble S (2011) Equilibrium of the human body and the gravity line: the basics. Eur Spine J 20(Suppl 5):558–563

    PubMed Central  PubMed  Google Scholar 

  40. Le Maitre CL, Frain J, Fotheringham AP, Freemont AJ, Hoyland JA (2008) Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology 45(5):563–575

    PubMed  Google Scholar 

  41. Le Maitre CL, Frain J, Millward-Sadler J, Fotheringham AP, Freemont AJ, Hoyland JA (2009) Altered integrin mechanotransduction in human nucleus pulposus cells derived from degenerated discs. Arthr Rheum 60(2):460–469

    Google Scholar 

  42. Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204(1):47–54

    PubMed  Google Scholar 

  43. Lee CR, Iatridis JC, Poveda L, Alini M (2006) In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine (Phila Pa 1976) 31(5):515–522

    Google Scholar 

  44. Li S, Jia X, Duance VC, Blain EJ (2011) The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study. Eur Cell Mater 21:508–522

    CAS  PubMed  Google Scholar 

  45. Liu GZ, Ishihara H, Osada R, Kimura T, Tsuji H (2001) Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine 26(2):134–141

    CAS  PubMed  Google Scholar 

  46. Lotz JC, Hsieh AH, Walsh AL, Palmer EI, Chin JR (2002) Mechanobiology of the intervertebral disc. Biochem Soc Trans 30(Pt 6):853–858

    CAS  PubMed  Google Scholar 

  47. Maclean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23(5):1120–1127

    CAS  PubMed  Google Scholar 

  48. MacLean JJ, Lee CR, Grad S, Ito K, Alini M, Iatridis JC (2003) Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine 28(10):973–981

    PubMed  Google Scholar 

  49. Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473(2):98–105

    CAS  PubMed  Google Scholar 

  50. Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Tamaki T (1999) Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine 24(4):315–319

    CAS  PubMed  Google Scholar 

  51. Mavrogonatou E, Kletsas D (2009) High osmolality activates the G1 and G2 cell cycle checkpoints and affects the DNA integrity of nucleus pulposus intervertebral disc cells triggering an enhanced DNA repair response. DNA Repair (Amst) 8(8):930–943

    CAS  Google Scholar 

  52. Mavrogonatou E, Kletsas D (2010) Effect of varying osmotic conditions on the response of bovine nucleus pulposus cells to growth factors and the activation of the ERK and Akt pathways. J Orthop Res 28(10):1276–1282

    CAS  PubMed  Google Scholar 

  53. Mavrogonatou E, Kletsas D (2012) Differential response of nucleus pulposus intervertebral disc cells to high salt, sorbitol, and urea. J Cell Physiol 227(3):1179–1187

    CAS  PubMed  Google Scholar 

  54. McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental “stress profilometry’. Proc Inst Mech Eng H 210(2):81–87

    CAS  PubMed  Google Scholar 

  55. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976) 17(1):66–73

    CAS  Google Scholar 

  56. Mietsch A, Neidlinger-Wilke C, Schrezenmeier H, Mauer UM, Friemert B, Wilke HJ, Ignatius A (2011) Evaluation of platelet-rich plasma and hydrostatic pressure regarding cell differentiation in nucleus pulposus tissue engineering. J Tissue Eng Regen Med 7(3):244–252

    PubMed  Google Scholar 

  57. Miyamoto K, Masuda K, Kim JG, Inoue N, Akeda K, Andersson GB, An HS (2006) Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. Spine J: Off J N Am Spine Soc 6(6):692–703

    Google Scholar 

  58. Nachemson A, Morris J (1963) Lumbar discometry. Lumbar intradiscal pressure measurements in vivo. Lancet 1(7291):1140–1142

    CAS  PubMed  Google Scholar 

  59. Nakamura T, Iribe T, Asou Y, Miyairi H, Ikegami K, Takakuda K (2009) Effects of compressive loading on biomechanical properties of disc and peripheral tissue in a rat tail model. Eur Spine J 18(11):1595–1603

    PubMed Central  PubMed  Google Scholar 

  60. Neidlinger-Wilke C, Liedert A, Wuertz K, Buser Z, Rinkler C, Kafer W, Ignatius A, Claes L, Roberts S, Johnson WE (2009) Mechanical stimulation alters pleiotrophin and aggrecan expression by human intervertebral disc cells and influences their capacity to stimulate endothelial migration. Spine 34(7):663–669

    PubMed  Google Scholar 

  61. Neidlinger-Wilke C, Mietsch A, Rinkler C, Wilke HJ, Ignatius A, Urban J (2012) Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells. J Orthop Res: Off Pub Orthop Res Soc 30(1):112–121

    Google Scholar 

  62. Neidlinger-Wilke C, Wurtz K, Liedert A, Schmidt C, Borm W, Ignatius A, Wilke HJ, Claes L (2005) A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J Neurosurg Spine 2(4):457–465

    PubMed  Google Scholar 

  63. Neidlinger-Wilke C, Wurtz K, Urban JP, Borm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15(Suppl 3):S372–S378

    PubMed  Google Scholar 

  64. Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 43(6):1017–1030

    PubMed Central  PubMed  Google Scholar 

  65. O’Connell GD, Johannessen W, Vresilovic EJ, Elliott DM (2007) Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine (Phila Pa 1976) 32(25):2860–2868

    Google Scholar 

  66. O’Connell GD, Vresilovic EJ, Elliott DM (2011) Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. J Orthop Res 29(4):547–555

    PubMed Central  PubMed  Google Scholar 

  67. Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration—an in vivo study on the New Zealand white rabbit. J Orthop Res 24(3):385–392

    CAS  PubMed  Google Scholar 

  68. Oshima H, Ishihara H, Urban JP, Tsuji H (1993) The use of coccygeal discs to study intervertebral disc metabolism. J Orthop Res 11(3):332–338

    CAS  PubMed  Google Scholar 

  69. Papachristou DJ, Papachroni KK, Basdra EK, Papavassiliou AG (2009) Signaling networks and transcription factors regulating mechanotransduction in bone. Bioessays 31(7):794–804

    CAS  PubMed  Google Scholar 

  70. Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG (2009) Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 15(5):208–216

    CAS  PubMed  Google Scholar 

  71. Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63(17):5357–5362

    CAS  PubMed  Google Scholar 

  72. Pratsinis H, Constantinou V, Pavlakis K, Sapkas G, Kletsas D (2012) Exogenous and autocrine growth factors stimulate human intervertebral disc cell proliferation via the ERK and Akt pathways. J Orthop Res 30(6):958–964

    CAS  PubMed  Google Scholar 

  73. Pratsinis H, Kletsas D (2007) PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways. Eur Spine J 16(11):1858–1866

    PubMed Central  PubMed  Google Scholar 

  74. Pratsinis H, Kletsas D (2008) Growth factors in intervertebral disc homeostasis. Connect Tissue Res 49(3):273–276

    CAS  PubMed  Google Scholar 

  75. Rajpurohit R, Risbud MV, Ducheyne P, Vresilovic EJ, Shapiro IM (2002) Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res 308(3):401–407

    CAS  PubMed  Google Scholar 

  76. Ramage L, Nuki G, Salter DM (2009) Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading. Scand J Med Sci Sports 19(4):457–469

    CAS  PubMed  Google Scholar 

  77. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164(3):915–924

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Rannou F, Poiraudeau S, Foltz V, Boiteux M, Corvol M, Revel M (2000) Monolayer anulus fibrosus cell cultures in a mechanically active environment: local culture condition adaptations and cell phenotype study. J Lab Clin Med 136(5):412–421

    CAS  PubMed  Google Scholar 

  79. Rannou F, Richette P, Benallaoua M, Francois M, Genries V, Korwin-Zmijowska C, Revel M, Corvol M, Poiraudeau S (2003) Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. J Cell Biochem 90(1):148–157

    CAS  PubMed  Google Scholar 

  80. Reza AT, Nicoll SB (2008) Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann Biomed Eng 36(2):204–213

    PubMed  Google Scholar 

  81. Rinkler C, Heuer F, Pedro MT, Mauer UM, Ignatius A, Neidlinger-Wilke C (2010) Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading. J Neurosurg Spine 13(4):535–542

    PubMed  Google Scholar 

  82. Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ, Shapiro IM (2006) Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 98(1):152–159

    CAS  PubMed  Google Scholar 

  83. Rohlmann A, Arntz U, Graichen F, Bergmann G (2001) Loads on an internal spinal fixation device during sitting. J Biomech 34(8):989–993

    CAS  PubMed  Google Scholar 

  84. Rohlmann A, Gabel U, Graichen F, Bender A, Bergmann G (2007) An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column. Med Eng Phys 29(5):580–585

    PubMed  Google Scholar 

  85. Rohlmann A, Graichen F, Bender A, Kayser R, Bergmann G (2008) Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month. Clin Biomech (Bristol, Avon) 23(2):147–158

    Google Scholar 

  86. Rohlmann A, Graichen F, Weber U, Bergmann G (2000) 2000 Volvo Award winner in biomechanical studies: monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine (Phila Pa 1976) 25(23):2981–2986

    CAS  Google Scholar 

  87. Rohlmann A, Petersen R, Schwachmeyer V, Graichen F, Bergmann G (2012) Spinal loads during position changes. Clin Biomech (Bristol, Avon) 27(8):754–758

    CAS  Google Scholar 

  88. Rohlmann A, Zander T, Graichen F, Dreischarf M, Bergmann G (2011) Measured loads on a vertebral body replacement during sitting. Spine J 11(9):870–875

    PubMed  Google Scholar 

  89. Salvatierra JC, Yuan TY, Fernando H, Castillo A, Gu WY, Cheung HS, Huant CY (2011) Difference in energy metabolism of annulus fibrosus and nucleus pulposus cells of the intervertebral disc. Cell Mol Bioeng 4(2):302–310

    PubMed Central  PubMed  Google Scholar 

  90. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24(23):2468–2474

    CAS  Google Scholar 

  91. Setton LA, Chen J (2004) Cell mechanics and mechanobiology in the intervertebral disc. Spine 29(23):2710–2723

    PubMed  Google Scholar 

  92. Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88(Suppl 2):52–57

    PubMed  Google Scholar 

  93. Sowa G, Vadala G, Studer R, Kompel J, Iucu C, Georgescu H, Gilbertson L, Kang J (2008) Characterization of intervertebral disc aging: longitudinal analysis of a rabbit model by magnetic resonance imaging, histology, and gene expression. Spine 33(17):1821–1828

    PubMed  Google Scholar 

  94. Sowa G, Westrick E, Pacek C, Coelho P, Patel D, Vadala G, Georgescu H, Vo N, Studer R, Kang J (2011) In vitro and in vivo testing of a novel regulatory system for gene therapy for intervertebral disc degeneration. Spine 36(10):E623–E628

    PubMed  Google Scholar 

  95. Stokes IA, Aronsson DD, Spence H, Iatridis JC (1998) Mechanical modulation of intervertebral disc thickness in growing rat tails. J Spinal Disord 11(3):261–265

    CAS  PubMed  Google Scholar 

  96. Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29(23):2724–2732

    PubMed  Google Scholar 

  97. Urban JP (2002) The role of the physicochemical environment in determining disc cell behaviour. Biochem Soc Trans 30(Pt 6):858–864

    CAS  PubMed  Google Scholar 

  98. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthr Res Ther 5(3):120–130

    Google Scholar 

  99. Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, Iatridis JC (2011) Complex loading affects intervertebral disc mechanics and biology. Osteoarthr Cartilage (Osteoarthr Res Soc) 19(8):1011–1018

    CAS  Google Scholar 

  100. Wenger KH, Woods JA, Holecek A, Eckstein EC, Robertson JT, Hasty KA (2005) Matrix remodeling expression in anulus cells subjected to increased compressive load. Spine (Phila Pa 1976) 30(10):1122–1126

    Google Scholar 

  101. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755–762

    CAS  PubMed  Google Scholar 

  102. Wilke HJ, Rohlmann A, Neller S, Graichen F, Claes L, Bergmann G (2003) ISSLS prize winner: a novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements. Spine (Phila Pa 1976) 28(23):2585–2593

    Google Scholar 

  103. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27(9):1235–1242

    PubMed Central  PubMed  Google Scholar 

  104. Wuertz K, Urban JP, Klasen J, Ignatius A, Wilke HJ, Claes L, Neidlinger-Wilke C (2007) Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J Orthop Res 25(11):1513–1522

    CAS  PubMed  Google Scholar 

  105. Wuertz K, Vo N, Kletsas D, Boos N (2012) Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur Cell Mater 23:103–119 (discussion 119–20)

    CAS  PubMed  Google Scholar 

  106. Yurube T, Nishida K, Suzuki T, Kaneyama S, Zhang Z, Kakutani K, Maeno K, Takada T, Fujii M, Kurosaka M, Doita M (2010) Matrix metalloproteinase (MMP)-3 gene up-regulation in a rat tail compression loading-induced disc degeneration model. J Orthop Res: Off Pub Orthop Res Soc 28(8):1026–1032

    CAS  Google Scholar 

  107. Zhang YH, Zhao CQ, Jiang LS, Dai LY (2011) Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. Eur Spine J 20(8):1233–1243

    PubMed Central  PubMed  Google Scholar 

  108. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 277(26):23934–23941

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All co-authors of this review wish to thank Dr. Michelle Kümin for her helpful revision of this manuscript. Part of the studies cited in the present review has received funding from the European Community’s Seventh Framework Programme Genodisc (FP7, 2007-2013) under Grant Agreement No. HEALTH-F2-2008-201626.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Neidlinger-Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neidlinger-Wilke, C., Galbusera, F., Pratsinis, H. et al. Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. Eur Spine J 23 (Suppl 3), 333–343 (2014). https://doi.org/10.1007/s00586-013-2855-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2855-9

Keywords

Navigation