Skip to main content

Advertisement

Log in

Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum)

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Many truffle species in the genus Tuber are endemic to North America. Some of these have commercial value such as Tuber oregonense and Tuber gibbosum, commonly known as Oregon white truffles. Most of what is known about the ecology of these truffles comes from observational data. These truffle species form ectomycorrhizas with Douglas-fir (Pseudotsuga menziesii) and sometimes fruit abundantly in early successional forest regrowth. The goal of this study was to characterize fungal communities and soils associated with truffle-producing Douglas-fir sites. We extracted DNA from roots of five trees at four different truffle-producing Douglas-fir sites (n = 20). We amplified the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) and sequenced amplicons with 454 pyrosequencing. After quality filtering, we assembled 15,713 sequences into 150 fungal operational taxonomic units (OTUs). Pezizomycetes (Tuber and Pyronemataceae) were the most abundant taxa detected followed by Helotiales. Agaricomycetes represented most by Thelephoraceae, Russulaceae, and Inocybaceae were also abundant. A total of five Tuber species were detected. T. oregonense was the most abundant OTU, followed by T. gibbosum and Wilcoxina mikolae. Fungal root endophytes were also detected and well represented by Chalara and Phialocephala spp. Fungal community structure and soil chemistry differed between sites. This study represents the first characterization of the fungal communities in Douglas-fir stands producing Oregon white truffles. We found that Tuber species can be dominant ectomycorrhizal symbionts of Douglas-fir. Truffle fungi are also important in forest health, food webs, and as a non-timber forest resource that can contribute to rural economies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  • Alonso Ponce R, Ágreda T, Águeda B, Aldea J, Martínez-Peña F, Modrego MP (2014) Soil physical properties influence "black truffle" fructification in plantations. Mycorrhiza 2014(Suppl 1):S55–S64. doi:10.1007/s00572-014-0558-7

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust J Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  • Barroetavena C, Cazares E, Rajchenberg M (2007) Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina. Mycorrhiza 17(5):355–373. doi:10.1007/s00572-007-0121-x

    Article  CAS  PubMed  Google Scholar 

  • Belfiori B, Riccioni C, Tempesta S, Pasqualetti M, Paolocci F, Rubini A (2012) Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiol Ecol 81(3):547–561. doi:10.1111/j.1574-6941.2012.01379.x

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. doi:10.1111/2041-210X.12073

    Google Scholar 

  • Benson AD, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res.1–6 doi: 10.1093/nar/gkr1202

  • Benucci GMN, Raggi L, Albertini E, Gógán Csorbai A, Donnini D (2014) Assessment of ectomycorrhizal biodiversity in Tuber macrosporum productive sites. Mycorrhiza 4:281–292

    Article  Google Scholar 

  • Binder M, Larsson K-H, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102(4):865–880. doi:10.3852/09-288

    Article  CAS  PubMed  Google Scholar 

  • Bonito G, Trappe JM, Rawlinson P, Vilgalys R (2010a) Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 102(5):1042–1057

    Article  PubMed  Google Scholar 

  • Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010b) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19(22):4994–5008

    Article  CAS  PubMed  Google Scholar 

  • Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DH, Nara K, Zambonelli A, Trappe JM, Vilgalys R (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8, e52765. doi:10.1371/journal.pone.0052765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonito G, Reynolds H, Hodkinson B, Nelson J, Tuskan G, Robeson M, Schadt C, Vilgalys R (2014) Plant host and soil origin influence fungal and bacterial assemblages in the rhizosphere of woody plants. Mol Ecol 23:3356–3370

    Article  PubMed  Google Scholar 

  • Bruns TD, Gardes M (1993) Molecular tools for the identification of ectomycorrhizal fungi - taxon-specific oligonucleotide probes for suilloid fungi. Mol Ecol 2:233–242

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456. doi:10.1111/j.1469-8137.2009.03003.x

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270

    Google Scholar 

  • Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  • Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219

    Article  Google Scholar 

  • Cline ET, Ammirati JF, Edmonds RL (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009. doi:10.1111/j.1469-8137.2005.01387.x

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562. doi:10.1046/j.1469-8137.2001.00142.x

    Article  Google Scholar 

  • De Caceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • Douglas GC, Heslin MC, Reid C (1989) Isolation of Oidiodendron maius from Rhododendron and ultrastructural characteristics of synthesized mycorrhizas. Can J Bot 67:2206–2212

    Article  Google Scholar 

  • Eckenwalder JE (2009) Conifers of the world. Timber Press, Portland

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. doi:10.1038/nmeth.2604

    PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar JM, Thomas WK (2015) FlowClus: efficiently filtering and denoising pyrosequenced amplicons. BMC Bioinformatics 16:105. doi:10.1186/s12859-015-0532-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.-Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369

    Article  Google Scholar 

  • Guevara G, Bonito G, Trappe JM, Cázares E, Williams G, Healy RA, Schadt C, Vilgalys R (2013) New North American truffles (Tuber spp.) and their ectomycorrhizal associations. Mycologia 105(1):194–209. doi:10.3852/12-087

    Article  PubMed  Google Scholar 

  • Guevara G, Bonito G, Cazares-Gonzalez E, Healy R, Vilgalys R, Trappe J (2015) Novel tuber spp. (Tuberaceae, Pezizales) in the puberulum group in Mexico. Ascomycetes 7(6):367–374

  • Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle: the history, lore, and science of the ultimate mushroom. Timber Press, Portland, p 304

    Google Scholar 

  • Harkness HW (1899) Californian hypogeous fungi. Proc Calif Acad Sci 1:241–292

    Google Scholar 

  • Hermann RK, Lavender DP (1999) Douglas-fir planted forests. New For 17(1–3):53–70. doi:10.1023/A:1006581028080

    Article  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. doi:10.2307/1934352

    Article  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339. doi:10.1046/j.1469-8137.1998.00185.x

    Article  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, Molina R, Hood K (2005) Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15:393–403. doi:10.1007/s00572-004-0339-9

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Lancellotti E, Hall I, Zambonelli A (2010) The ectomycorrhizal community in natural Tuber borchii grounds. FEMS Microbiol Ecol 72:250–260. doi:10.1111/j.1574-6941.2010.00844.x

    Article  CAS  PubMed  Google Scholar 

  • Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630. doi:10.1111/j.1469-8137.2005.01354.x

    Article  PubMed  Google Scholar 

  • Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151. doi:10.1111/j.1365-2435.2010.01699.x

    Article  Google Scholar 

  • Karst J, Hoeksema JD, Jones MD, Turkington R (2011) Parsing the roles of abiotic and biotic factors in Douglas-fir seedling growth. Pedobiologia 54:273–280. doi:10.1016/j.pedobi.2011.05.002

    Article  Google Scholar 

  • Koide RT, Xu B, Sharda J (2005) Contrasting belowground views of an ectomycorrhizal fungal community. New Phytol 166:251–262

    Article  PubMed  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. doi:10.1111/mec12481

    Article  PubMed  Google Scholar 

  • Koukol O (2011) New species of Chalara occupying coniferous needles. Fungal Divers 49:75–91. doi:10.1007/s13225-011-0092-2

    Article  Google Scholar 

  • Kranabetter JM, Stoehr MU, O'Neill GA (2012) Divergence in ectomycorrhizal communities with foreign Douglas-fir populations and implications for assisted migration. Ecol Appl 22:550–560. doi:10.1890/11-1514.1

    Article  CAS  PubMed  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage Publications, Beverly Hills

    Google Scholar 

  • Leinonen R, Sugawara H, Shumway M, on behalf of the International Nucleotide Sequence Database Collaboration (2011) The sequence read archive. Nucleic Acids Res 39(Database issue):D19–D21. doi:10.1093/nar/gkq1019

    Article  CAS  PubMed  Google Scholar 

  • Leonardi M, Iotti M, Oddis M, Lalli G, Pacioni G, Leonardi P, Maccherini S, Perini C, Salerni E, Zambonelli A (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales). Mycorrhiza 23:349–358

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  • McMurdie, Holmes (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. doi:10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10(4), e1003531. doi:10.1371/journal.pcbi.1003531

    Article  PubMed  PubMed Central  Google Scholar 

  • Murat C, Vizzini A, Bonfante P, Mello A (2005) Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiol Lett 245:307–313

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org/

    Google Scholar 

  • Reininger V, Sieber TN (2012) Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLoS ONE 7(8), e42865. doi:10.1371/journal.pone.0042865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice V, Currah RS (2002) New perspectives on the niche and holomorph of the myxotrichoid hyphomycete, Oidiodendron maius. Mycol Res 106(12):1463–1467. doi:10.1017/S0953756202006767

    Article  Google Scholar 

  • Ritchie, ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43. doi:10.1093/nar/gkv007

  • Salerni E, Perini C, Gardin L (2014) Linking climate variables with tuber borchii sporocarps production. Nat Res 5:408–418. doi:10.4236/nr.2014.58038

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics (Oxford, England) 27:863–864

    Article  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109(16):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688–688. doi:10.1038/163688a0

    Article  Google Scholar 

  • Taschen E, Sauve M, Taudiere A, Parlade J, Selosse M-A, Richard F (2015) Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761. doi:10.1111/1462-2920.12741

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS et al (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science 346(6213), 1256688. doi:10.1126/science.1256688

    Article  PubMed  Google Scholar 

  • Trappe JM, Molina R, Luoma D, Cázares E, Pilz D, Smith JE, Castellano MA, Miller SL, Trappe MJ (2009) Diversity, ecology, and conservation of truffle fungi in forests of the Pacific Northwest. Ben. Tech. Rep, PNW-GTR-772. US Dept of Agric, Forest Service, Pacific Northwest research Station, Portland, 194p. (www.fs.fed.us/pnw/pubs/pnw_gtr772.pdf)

    Google Scholar 

  • Trappe M, Trappe J, Bonito G (2010) Kalapuya brunnea gen. & sp. nov. and its relationship to the other sequestrate genera in Morchellaceae. Mycologia 101(5):1058–1065

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the land owners who graciously allowed us to sample on their properties. GNMB and GB are grateful to AgBioResearch and Michigan State University for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Bonito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 12 kb)

Table S2

(DOCX 6 kb)

Table S3

(DOCX 15 kb)

Fig. S1

Soils suitable for Oregon white (blue) and black (red) truffles. Site W (teal), R site (grey), F site (yellow) and BR site (red-orange). The USA map was modified from http://d-maps.com/carte.php?num_car=1682&lang=en (GIF 118 kb)

High resolution Image (EPS 732 kb)

Fig. S2

Relative abundances of the 15 most frequently observed OTUs within each of the studied sites (GIF 73 kb)

High resolution Image (EPS 35 kb)

Fig. S3

Function stressplot draws a Shepard diagram, which is a plot of ordination distances and monotone or linear fit line against original dissimilarities. In addition, it displays two correlation-like statistics on the goodness of fit in the graph. The non-metric fit is based on stress S and defined as R2 = 1-S*S. The “linear fit” is the squared correlation between fitted values and ordination distances (GIF 38 kb)

High resolution Image (EPS 96 kb)

Fig. S4

Constrained Analysis of Principal Coordinates (CAP) of the soil characteristics obtained in the four sampled sites. The model to test goodness of constraints (sites) was significant at p ≤ 0.01 after 9999 permutations (GIF 79 kb)

High resolution Image (EPS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benucci, G.M.N., Lefevre, C. & Bonito, G. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum). Mycorrhiza 26, 367–376 (2016). https://doi.org/10.1007/s00572-015-0677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0677-9

Keywords

Navigation