Skip to main content
Log in

Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bever J (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244:281–290

    Article  CAS  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. doi:10.1007/s11104-008-9877-9

    Article  CAS  Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhiza research. Mycologue Publications, Waterloo

    Google Scholar 

  • Collins CD, Foster BL (2009) Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90:2567–2576

    Article  PubMed  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR et al (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  PubMed  Google Scholar 

  • Development Core Team R (2011) R: a language and environment for statistical computing. R Development Core Team, Vienna

    Google Scholar 

  • Doubková P, Kohout P, Sudová R (2013) Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants. Mycorrhiza. doi:10.1007/s00572-013-0494-y

    Google Scholar 

  • Fitter AH, Heinemeyer A, Husband R et al (2004) Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges. Can J Bot 82:1133–1139. doi:10.1139/b04-045

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Harte J, Kinzig AP (1993) Mutualism and competition between plants and decomposers: implications for nutrient allocation in ecosystems. Am Nat 141:829–846

    Article  CAS  PubMed  Google Scholar 

  • Hendershot WH, Lalande H, Duquette M (1993) Soil reaction and exchangeable acidity. In: Carter MR (ed) Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 141–146

    Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Ji B, Bentivenga SP, Casper BB (2012) Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales. Oecologia 168:187–197

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. doi:10.1111/j.1469-8137.2009.03110.x

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA et al (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci 107:2093–2098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kardol P, Martijn Bezemer T, van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. doi:10.1126/science.1208473

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110

    Article  PubMed  Google Scholar 

  • Koide RT, Li M (1989) Appropriate controls for vesicular–arbuscular mycorrhiza research. New Phytol 111:35–44

    Article  Google Scholar 

  • LECO Corporation (2011) LECO SC-444 instruction manual. LECO Corporation, St. Joseph

    Google Scholar 

  • Lichter J (1997) AMS radiocarbon dating of Lake Michigan beach-ridge and dune development. Quat Res 48:137–140

    Article  Google Scholar 

  • Lichter J (1998) Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol Monogr 68:487–510

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. doi:10.1126/science.1143082

    Article  CAS  PubMed  Google Scholar 

  • Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 25–38

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24:117–132

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus by extraction with sodium bicarbonate (Circular 39). USDA, Washington

    Google Scholar 

  • Powell JR, Parrent JL, Hart MM et al (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc B 276:4237–4245

    Article  PubMed Central  PubMed  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  CAS  PubMed  Google Scholar 

  • Reid K (2006) Soil fertility handbook. Ministry of Agriculture. Food and Rural Affairs, Guelph

    Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  • Schechter SP, Bruns TD (2013) A common garden test of host-symbiont specificity supports a dominant role for soil type in determining AMF assemblage structure in Collinsia sparsiflora. PLoS ONE 8:e55507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. http://schuessler.userweb.mwn.de/amphylo/Schuessler&Walker2010_Glomeromycota.pdf. Accessed 18 Sept 2013.

  • Sherrard ME, Maherali H (2012) Local adaptation across a fertility gradient is influenced by soil biota in the invasive grass, Bromus inermis. Evol Ecol 26:529–544. doi:10.1007/s10682-011-9518-2

    Article  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Sikes BA, Maherali H, Klironomos JN (2012) Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 121:1791–1800. doi:10.1111/j.1600-0706.2012.20160.x

    Article  Google Scholar 

  • Simard RR (1993) Ammonium acetate-extractable elements. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 39–42

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL (2004) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451. doi:10.1016/j.soilbio.2004.04.023

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Blackwood CB et al (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Zak DR, Holmes WE, White DC et al (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050. doi:10.1890/02-0433

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kevin Courtney, Michelle Doucette, Lindsay Wilson, and Michael Mucci for the help with maintaining the experiment and data collection. BAS was partially supported by an Arthur Richmond Scholarship and an International Scholarship from the University of Guelph. HM and JNK wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Sikes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikes, B.A., Maherali, H. & Klironomos, J.N. Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. Mycorrhiza 24, 219–226 (2014). https://doi.org/10.1007/s00572-013-0531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0531-x

Keywords

Navigation