Skip to main content
Log in

Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams WW, Demmig-Adams B (1994) Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol Plantarum 92:451–458

    Article  CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005) Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ Exp Bot 54:109–120

    Article  CAS  Google Scholar 

  • Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivaris E, Saavedra I, Alberdi M, Valenzuela E (2009) Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Physiol 29(8):1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Anderson VL, McLean RA (1974) Design of experiments. Marcel Dekker, New York

    Google Scholar 

  • Bates LS, Walderen RD, Taere ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Browning MHR, Whitney RD (1993) Infection of containerized jack pine and black spruce by Laccaria species and Telephora terrestris and seedling survival and growth after outplanting. Can J For Res 23:330–333

    Article  Google Scholar 

  • Brundrett M, Malajczuk N, Mingquin G, Daping X, Snelling S, Dell B (2005) Nursery inoculation of Eucalyptus seedlings in Western Australia and Southern China using spores and mycelial inoculum of diverse ectomycorrhizal fungi from different climatic regions. For Ecol Manage 209:193–205

    Article  Google Scholar 

  • Brzezinska E, Kozlowska M (2008) Effect of sunlight on phenolic compounds accumulation in coniferous plants. Dendrobiology 59:3–7

    CAS  Google Scholar 

  • Burdett AN (1983) Quality control in the production of forest planting stock. For Chron 59:132–138

    Google Scholar 

  • Cairney JWG, Chambers SM (1997) Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7:117–131

    Article  Google Scholar 

  • Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin

    Book  Google Scholar 

  • Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–195

    Article  Google Scholar 

  • Castellano MA (1996) Outplanting performance of mycorrhizal inoculated seedlings In: Mukerji KG (ed) Concepts in mycorrhizal research. Handbook of vegetation science, vol 19/2, Kluwer, Dordrecht, pp. 223–301

  • Chen YL, Kang LH, Malajczuk N, Dell B (2006) Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii and P. radiata. Mycorrhiza 16:251–259

    Article  PubMed  Google Scholar 

  • Close DC, Beadle CL, Battaglia M (2004) Foliar anthocyanin accumulation may be useful indicator of hardiness in eucalypt seedlings. For Ecol Manage 198:169–181

    Article  Google Scholar 

  • Close DC, Beadle CL, Brown PH, Holz GK (2000) Cold-induced photoinhibition affects establishment of Eucalyptus nitens (Deane and Maiden) Maiden and Eucalyptus globulus Labill. Trees 15:32–41

    Article  Google Scholar 

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics: protection from photodamage not herbivores? Oikos 99:166–172

    Article  CAS  Google Scholar 

  • Conjeaud C, Scherom P, Mousain D (1996) Effects of phosphorous and ectomycorrhiza on maritime pine seedlings (Pinus pinaster). New Phytol 133:345–351

    Article  Google Scholar 

  • Corcuera L, Gil-Pelegrin E, Notivol E (2011) Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures. PLoS One 6(12):e28772

    Article  CAS  PubMed  Google Scholar 

  • Correia I, Almeida MH, Aguiar A, Alía R, David TS, Pereira JS (2008) Variations in growth, survival and carbon isotope composition (δ13C) among Pinus pinaster populations of different geographic origins. Tree Physiol 28:1545–1552

    Article  PubMed  Google Scholar 

  • Díaz G, Carrillo C, Honrubia M (2010) Mycorrhization, growth and nutrition of Pinus halepensis seedlings fertilized with different doses and sources of nitrogen. Ann For Sci 67(4):405–503

    Article  Google Scholar 

  • Dickson A, Leaf AL, Hosner IE (1960) Quality appraisal of white spruce and white pine seedlings stock in nurseries. For Chron 36:10–13

    Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570

    Article  CAS  Google Scholar 

  • Duñabeitia MK, Hormilla S, García-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don Mycorrhiza 14:11–18

    Article  Google Scholar 

  • Flykt E, Timonen S, Pennanen T (2008) Variation of ectomycorrhizal colonisation in Norway spruce seedlings in Finnish forest nurseries. Silva Fennica 42:571–585

    Google Scholar 

  • Gobert A, Plassard C (2002) Differential NO3 dependent patterns of NO3 uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association. New Phytol 154:509–516

    Article  CAS  Google Scholar 

  • González-Ochoa AI, de las Heras J, Torres P, Sánchez-Gómez E (2003) Mycorrhization of Pinus halepensis Mill. and Pinus pinaster Aiton seedlings in two commercial nurseries. Ann For Sci 60:43–48

    Article  Google Scholar 

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Grossnickle SC, Folk RS (1993) Stock quality assessment: forecasting survival and performance on a reforestation site. Tree Planters' Notes 44:113–121

    Google Scholar 

  • Han Q, Shinohara K, Kakubari Y, Mukai Y (2003) Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica. Plant Cell Environ 26:715–723

    Article  CAS  Google Scholar 

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF (1976) Distribution of ectomycorrhizae in a mature Douglas-fir/larch soil in western Montana. For Sci 22:393–633

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on antioxidant defence systems of two wheat cultivars. Plant Physiol Bioch 40:691–696

    Article  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Krause GH, Virgo A, Winter K (1995) High susceptibility to photoinhibition of young leaves of tropical forest trees. Planta 197:583–591

    Article  CAS  Google Scholar 

  • Krol M, Gray GR, Hurry VM, Öquist G, Malek L, Huner NPA (1995) Low temperature stress and photoperiod affect an increase tolerance to photoinhibition in Pinus banksiana seedlings. Can J Bot 73:1119–1127

    Article  CAS  Google Scholar 

  • Kropp BR, Langlois EG (1990) Ectomycorrhizae in reforestation. Can J For Res 20:438–451

    Article  Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortín JA (1992) Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiol 10:153–167

    Article  PubMed  Google Scholar 

  • Le Tacon F, Alvarez IF, Bouchard D, Henrion B, Jackson RM, Luff S, Parlade JI, Pera J, Stenström E, Villeneuve N, Walker C (1992) Variations in field response of forest trees to nursery ectomycorrhizal inoculation in Europe. In: Read DJ, Lewis DH, Fitter A, Alexander I (eds) Mycorrhizas in ecosystems. CAB, Wallingford, pp 119–134

    Google Scholar 

  • Majada J, Martínez-Alonso C, Feito I, Kidelman A, Aranda I, Alía R (2011) Mini-cuttings: an effective technique for the propagation of Pinus pinaster Ait. New Forest 41:399–412

    Article  Google Scholar 

  • Major JE, Johnsen KH (1996) Family variation in photosynthesis of 22-year-old black spruce: a test of two models of physiological response to water stress. Can J For Res 26:1922–1933

    Article  Google Scholar 

  • Malik V, Timmer VR (1998) Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixed-wood sites: a bioassay study. Can J For Res 28:206–215

    Article  Google Scholar 

  • Mañas P, Castro E, de las Heras J (2009) Quality of maritime pine (Pinus pinaster Ait.) seedlings using waste materials as nursery growing media. New Forest 37:295–311

    Article  Google Scholar 

  • Martin FM, Botton B (1993) Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Adv Plant Pathol 9:83–102

    Google Scholar 

  • Martínez-Alonso C, Kidelman A, Feito I, Velasco T, Alía R, Gaspar MJ, Majada J (2012) Optimization of seasonality and mother plant nutrition for vegetative propagation of Pinus pinaster Ait. New Forest 43:651–663

    Article  Google Scholar 

  • Marx DH (1980) Ectomycorrhizal fungus inoculation: a tool for improving forestation practices. In: Mikola P (ed) Tropical mycorrhiza research. Oxford University Press, New York, pp 13–71

    Google Scholar 

  • Maslova TG, Mamushina NS, Sherstneva OA, Bubolo LS, Kubkova EK (2009) Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers. Rus J Plant Physiol 56:607–615

    Article  CAS  Google Scholar 

  • McAlister JA, Timmer VR (1998) Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol 18:195–202

    Article  PubMed  Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, Minn, pp 115–129

    Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Func Plant Biol 30:865–873

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Nozzolillo C, Isabelle P, Andersen OM, Abou-Zaid M (2002) Anthocyanins of jack pine (Pinus banksiana) seedlings. Can J Bot 80:796–801

    Article  CAS  Google Scholar 

  • Nozzolillo C, Isabelle P, Das G (1990) Seasonal changes in the phenolic constituents of jack pine seedlings (Pinus banksiana). Can J Bot 68:2010–2017

    CAS  Google Scholar 

  • Oliveira RS, Franco AR, Castro PML (2012) Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecol Eng 43:95–103

    Article  Google Scholar 

  • Oliveira RS, Franco AR, Vosátka M, Castro PML (2010) Management of nursery practices for efficient ectomycorrhizal fungi application in the production of Quercus ilex. Symbiosis 52:125–131

    Article  Google Scholar 

  • Oliveira G, Nunes A, Clemente A, Correia O (2011) Effect of substrate treatments on survival and growth of Mediterranean shrubs in a revegetated quarry: an eight-year study. Ecol Eng 37:255–259

    Article  Google Scholar 

  • Oquist G, Gardeström P, Huner NPA (2001) Metabolic changes during cold acclimation and subsequent freezing and thawing. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht, pp 137–163

    Chapter  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Ann Rev Plant Biol 54:329–355

    Article  Google Scholar 

  • Ortega U, Duñabeitia M, Menendez S, Gonzalez-Murua C, Majada J (2004) Effectiveness of mycorrhizal induction at nursery-stage on growth of Pinus radiata under different soil and water regimes. Tree Physiol 24:65–73

    Article  CAS  PubMed  Google Scholar 

  • Ottander C, Campbell D, Öquist G (1995) Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197:176–183

    Article  CAS  Google Scholar 

  • Parlade J, Pera J, Luque J (2004) Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14:171–175

    Article  PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Pera J, Alvarez IF (1995) Ectomycorrhizal fungi of Pinus pinaster. Mycorrhiza 5:193–200

    Article  Google Scholar 

  • Quoreshi AM (2003) Nutritional preconditioning and ectomycorrhizal formation of Picea mariana (Mill.) BSP seedlings. Eurasian J For Res 6:1–63

    Google Scholar 

  • Quoreshi AM, Khasa DP (2008) Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenergy 32:381–391

    Article  CAS  Google Scholar 

  • Quoreshi AM, Piche Y, Khasa DP (2008) Field performance of conifer and hardwood species 5 years after nursery inoculation in the Canadian Prairie Provinces. New Forest 35(3):235–253

    Article  Google Scholar 

  • Reddell P, Malajczuk N (1984) Formation of mycorrhizae by jarrah (Eucalyptus marginata Donn. ex Smith) in litter and soil. Aust J Bot 32:511–520

    Article  Google Scholar 

  • Rincón A, Álvarez IF, Pera J (2001) Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza 11:265–271

    Article  Google Scholar 

  • Rincón A, Parlade J, Pera J (2007) Influence of the fertilisation method in controlled ectomycorrhizal inoculation of two Mediterranean pines. Ann For Sci 64:577–583

    Article  Google Scholar 

  • Royo P, Fernandez M, Fischer CR (1998) Síntesis micorrícica de Lactarius deliciosus Fr. y Pinus sylvestris L. Sistemas y Recursos Forestales 7(1–2):85–93

    Google Scholar 

  • Schaberg PG, Snyder MC, Shane JB, Donnelly JR (2000) Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiol 20:549–555

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Sousa NR, Franco AR, Oliveira RS, Castro PM (2012) Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster. J Environ Manage 30:1–6

    Google Scholar 

  • Steinfeld D, Amaranthus MP, Cazares E (2003) Survival of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings outplanted with rhizopogon mycorrhizae inoculated with spores at the nursery. Journal of Arboriculture 29:197–208

    Google Scholar 

  • Stenström E, Ek M, Unestam U (1990) Variation in field response of Pinus sylvestris to nursery inoculation with 4 different ectomycorrhizal fungi. Can J For Res 20:1796–1803

    Article  Google Scholar 

  • Stenström E, Ek M (1990) Field growth of Pinus sylvestris following nursery inoculation with mycorrhizal fungi. Can J For Res 20:914–918

    Article  Google Scholar 

  • Stottlemyer AD, Wang GG, Wells CE, Stottlemyer DW, Waldrop TA (2008) Reducing airborne ectomycorrhizal fungi and growing non-mycorrhizal loblolly pine (Pinus taeda L.) seedlings in a greenhouse. Mycorrhiza 18(5):269–275

    Article  PubMed  Google Scholar 

  • Strimbeck GR, Kjellsen TD, Schaberg PG, Murakami PF (2008) Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiol 28:1365–1374

    Article  PubMed  Google Scholar 

  • Timmer VR, Munson AD (1991) Site-specific growth and nutrient uptake of planted Picea mariana in the Ontario Clay Belt. IV. Nitrogen loading response. Can J For Res 21:1058–1065

    Article  Google Scholar 

  • Van den Driessche R (1985) Late-season fertilization, mineral nutrient reserves, and retranslocation in planted Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. For Sci 31:485–496

    Google Scholar 

  • Villeneuve N, Le Tacon F, Bouchard D (1991) Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglas-fir seedlings. Plant Soil 135:95–107

    Article  Google Scholar 

  • Vosátka M, Gajdos J, Kolomý P, Kavková M, Oliveira RS, Franco AR, Sousa NR, Carvalho MF, Castro PML, Albrechtová J (2008) Applications of ectomycorrhizal inocula in nursery and field plantings: the importance of inoculum tuning to target conditions. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. German Phytomedical Society, Braunschweig, pp 112–125

    Google Scholar 

  • Wang Y, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:1063–1073

    Article  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:714–313

    Article  Google Scholar 

  • Xu X, Timmer VR (1998) Biomass and nutrient dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes. Plant Soil 203:313–322

    Article  CAS  Google Scholar 

  • Xu X, Timmer VR (1999) Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrient loading and fertilization. Plant Soil 216:83–91

    Article  CAS  Google Scholar 

  • Yu L, Perret J, Harris M, Wilson J, Haley S (2003) Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J Agric Food Chem 51:1566–1570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J. Sanchez-Zabala holds a Ph.D. grant from the Basque Country Government. This research was financed by the Basque Country Government (IT526-10 from the Research and Education Department as well as from the Agriculture Department) and the Spanish Government (AGL2009-13339-CO2-01 from the Ministry of Science and Innovation). The authors would like to express their thanks to BioEntelechia Translations for critical reading of the manuscript and improvement of its English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseba Sanchez-Zabala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Zabala, J., Majada, J., Martín-Rodrigues, N. et al. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23, 627–640 (2013). https://doi.org/10.1007/s00572-013-0500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0500-4

Keywords

Navigation